Project Description

Functional restoration of locomotive for use by ARM.

History and Statistics

Manufacturer:  Baldwin Locomotive Works, Eddystone, PA (Philadelphia)

Model:  DRS-6-6-1500 (Diesel Road Switcher, 6-axles, 6-traction motors, 1500-horsepower)

Built: July 1950, Order Number: 50507

Serial Number: 74812 (one of 82 units built between 1948 – 1950)

Orignial Owner: McCloud River Railroad, McCloud, CA, locomotive #29.

Sold to Magma Arizona Railroad as locomotive #10.

Diesel Engine: Baldwin Model 608SC, 8 – Cylinder In-Line, 12-3/4” Bore, 15-1/2”-Stroke, 15,832 Cubic In. Displacement, 13.45:1 Compression Ratio, Turbocharged.

Max. Horsepower: 1625 (1500 available for traction)

Max. RPM: 625

Lubricating Oil: 200 gallons

Coolant: 300 gallons

Fuel Capacity: 900 gallons

Generators: Main:  Westinghouse 471B,  Auxiliary:  Westinghouse YG42B

Traction Motors: Westinghouse (6 each)

Trucks: C-C, General Steel Castings, “Commonwealth” Cast Frames

Truck Wheel Base: 13’-00” (note unequal axle spacing)

Truck Centers: 32’-03”

Wheel Diameter @Tread: 42”

General Info

Equipped with Multiple-Unit Controls

Equipped with Dynamic Brakes

Coupled Length: 58’-00”

Height from Rail to Top of Cab: 14’-00”

Weight, Working Order: 292,000 lbs  (reduced weight model; 325,000 lbs was standard)

Maximum Safe Speed: 60 MPH

Historical Photos

Magma Arizona #10, at Desert Wells Tank, 1/15/80.  Photo by: Bob Trennert   Baldwin Builder Photo taken in 1950 at Eddystone, PA as McCloud #29.  Source:  Baldwin-Hamilton Collection, Courtesy of Pennsylvania Historical and Museum Commission, Pennsylvania State Archives   Baldwin Builder Photo taken in 1950 at Eddystone, PA as McCloud #29.  Source:  Baldwin-Hamilton Collection, Courtesy of Pennsylvania Historical and Museum Commission, Pennsylvania State Archives

Baldwin Sounds

Lionel Trains, in anticipation of introducing a sound-equipped model of a Baldwin DR-12-8-1500/2 ‘Centipede’ locomotive, needed an accurate recording of a model 608SC diesel engine. Our Baldwin DRS-6-6-1500 locomotive contains one of the very few operating examples of this engine, so Lionel made arrangements with the museum to record the sounds of our locomotive: engine starting, various RPM settings, horn, bell, brake releases, and engine shut down. This recording is a small sample of several hours-worth of high-quality digital recordings made on Dec 03, 2011. It is used here by permission of Lionel LLC, copyright 2012.

Although the recording contains some loud sounds, it’s recommended to turn up the volume to best capture all the nuances of the engine’s character. The first sound heard is the engine slowly turning over. There is no separate starting motor noise since the engine is being turned by a special winding on the main generator, energized by the batteries. As the engine gains speed, and just before it roars to life, the doors of the engine compartment can be heard rattling. Once the engine starts, the RPM varies up and down for a moment until the governor settles down to a steady idle. Listening carefully, the sound of the turbocharger coming up to speed can be heard at about 20-30 seconds into the recording.

After the engine idles for a moment, a blast of the horn is heard. Since the locomotive’s two horns are of different styles, a distinct two-tone note is heard. If you’re listening in stereo, you can discern the position of the front and rear horns.

At last the engine is shut down, and just before it stops, the engine compartment doors can again be heard rattling. A final rushing-air sound is the turbocharger winding down after the engine has stopped.

X Click here to listen

August 2013
Removed the covers on the two air cylinders for the reverser, and found much dirt and little lubrication. Cleaned the cylinders and lubricated the packing with neat’s foot oil. Tested the reverser using shop air, and despite the lower than normal pressure, the reverser seemed to work much better than usual.

Created a small wooden frame and cover for the horn valve access hole in the cab ceiling.

June - July 2013
Installed the remaining trim strips on the cab ceiling, set a few protruding staples, and used Durham’s Water Putty to fill the resulting holes. Sanded the water putty smooth.

Retrieved two barrels of lube oil from the bullpen, but discovered that both barrels were contaminated with water. Only about 28 quarts were successfully siphoned off the top and added to the crankcase. The dip stick now reads above the ‘low’ mark, but it’s still along way to the ‘full’ mark.

May 2013
Performed the usual tasks in preparation for National Train Day: moved the loco north and set-up the entry/exit steps; vacuumed and washed the cab interior and exterior areas where visitors might touch; put up signage; and set up the long air hose.

NTD went well, with many visitors enjoying the horn blowing, even if some of them required a little coaxing of their inner child before they would pull the chain. Only the north-facing horn was operating, which really helped with the noise-annoyance factor south of the locomotive. Even though it was a hot day, a nice cross-breeze and the newly insulated ceiling made the cab quite comfortable even into the afternoon.

After NTD, the locomotive was moved back to its usual position so that the battery charger could be reconnected.

April 2013
Purchased two 4’x8’ sheets of ¾” thick, foil-backed foam insulation, and three 4’x8’ sheets of 1/8” thick tempered hardboard for the cab ceiling project. Loctite’s ‘Heavy Duty Powergrab’ worked very well to secure the foam, with no clamping or bracing required for the foam to follow the curve of the steel ceiling. A significant reduction in radiated heat off the steel roof was immediately noted, even before installation of the foam was complete. The hardboard ceiling was divided into six panels, instead of the original three. This made it possible to fit the new panels behind the existing wall panels. Each panel was tacked into place with a pneumatic stapler, and then permanently secured with countersunk screws. After a light sanding to level out the seams, narrow strips of hardboard were stapled and glued over the seams to hide them. The original hardboard bezel around the ceiling light was cleaned up, and secured in place. The bulb socket was cleaned up, and the bulb cage was stripped and re-painted.
The ceiling project is not complete, but its appearance is much improved for National Train Day.

March 2013
The locomotive was successfully operated on March 16. All went well, and even the reverser gave little trouble, probably due to the warmer weather. Lube oil is now very low and must be replenished before the next operating session.

February 2013
The locomotive was started successfully on Feb-02, with the usual problems with reverser and air compressor controller. No further problems were observed with the AUX GEN switch. The lube oil is not at the ‘low’ mark yet, but it’s getting close, so it will need replenishing soon. The crew practiced using hand signals, coupling and uncoupling, handling air hoses and angle cocks, handbrakes, wheel chocks and skates, and using the automatic air brakes.

After the operating session, the battery charger input cable shorted while being handled. This was due to crumbling insulation on the very old wire. Potential replacement cable on-hand was judged to be in a similar unusable condition. A bit of luck secured the donation of an ample quantity of nearly new 6-AWG, 4-conductor welding cable. The new cable has been installed and the charger is back on-line.

January 2013
Purchased a 2x4 foot sample of 1” EPS foam board with foil backing. Made a test installation in the cab ceiling, and determined that the material is flexible enough to follow the curve of the roof. This will be used to insulate the cab ceiling, an upgrade to the original design (which was no insulation).

October 27, 2012
The locomotive was started and operated successfully, performing minor switching in the yard. The reverser and the air compressor controller gave their usual troubles, but they did not interfere with operations. Upon shut down, it was discovered that the AUX GEN circuit breaker would not stay in the OFF position. A little jiggling got it working again but this will be investigated further before the next operating session. We may have a spare breaker in an unused circuit. Alan Rybarchyk cleaned the placards and replaced the US and Arizona flags.

October 20, 2012
Another 45 gallons of fuel was added, which brought the level up to where it shows on the gauge.

October 06, 2012
The locomotive was started after a hiatus of nearly six months. Cranking was robust (indicating healthy batteries) and the engine started easily. The locomotive ran very smoothly, with no problems experienced, other than a little initial trouble with the reverser. The exhaust was very clean, and even the diesel-dots seemed fewer and smaller than normal.

September 29, 2012
45 gallons of diesel fuel was added, and the battery water was replenished. The remaining pieces of the cab ceiling were removed and the cab vacuumed. The wires for the old roof beacons (now long gone) were removed from the ceiling. The ceiling is now ready to receive new panels.

July 2012
The underlying wood framework for the cab’s ceiling was repaired and re-secured to the steel roof. Much of the original hardware was loose or missing.

With some of the ceiling panels removed, the air pipe for the rear-facing horn was exposed, allowing the installation of another shut-off valve. A small access panel will allow the valve to be operated once the ceiling is replaced. Now, either horn may be shut-off as needed, which means that for next NTD, only the north-facing horn will be used.

June 2012
Work has started on removing the interior ceiling panels in the cab. The old material, similar to 1/8” Masonite, is cracked and missing several large pieces. A hole in the cab roof was patched. A shut-off valve was installed on the roof for controlling the front-facing horn.

May 12, 2012
National Train Day! The locomotive was a popular attraction with the opportunity to blow the horn. Which they did…all day long. The rear horn was turned off, but with the front horn facing the display yard, it was very loud. Plan for next year: operate only the rear, north-facing horn!

April 14, 2012
The locomotive was successfully started and operated. The reverser caused its usual problems. In preparation for National Train Day, the locomotive was parked at the north end of the yard and the steps were put into place. The gangplanks were modified to match the level between the steps and the locomotive walkway. An existing pulley/belt shroud was adapted and mounted to a stationary air compressor that will be used to supply air for NTD horn blowing

Alan Rybarchyk created another permanent placard for the locomotive. This one will list the technical specifications for the locomotive.

March 3, 2012

The locomotive started easily and ran well for about 90-minutes. The reverser would not operate on its own for the entire session, indicating its worsening condition.

Alan Rybarchyk and Kyle Sikes took new temperatures readings of each cylinder’s exhaust manifold, using a non-contact infrared thermometer. Before adjusting the fuel rack settings, the range of cylinder temperatures was 129 degrees. The new readings show that the range has been reduced to 45 degrees. Although this is still far from the recommended variation of only 15 degrees between cylinders, it shows that our adjustments are going in the right direction.

We received the sample sound recording made by Lionel, and Steve Whisel is working on adding it to our website.

Thanks to Alan Rybarchyk, we received two builder’s photos of McCloud River RR #29, as #10 was known when new. These came from the Baldwin-Hamilton Collection, Courtesy of Pennsylvania Historical and Museum Commission, Pennsylvania State Archives. Digital copies are on the way that will allow posting on our website.

Alan Rybarchyk mounted United Sates and Arizona flags on the locomotive.


January 21, 2012
The locomotive was started and operated. Cranking was vigorous, which indicates that our new charging schedule is working well. The charger is being run in ‘float mode’ at all times, and switched over to ‘full charge mode’ one week before a planned start. Only a minimal amount of battery water is being consumed by this charging schedule. Added about three gallons after checking specific gravity.

The reverser gave a little trouble until things warmed up, but otherwise the locomotive ran well for about two hours, during which switching was performed to move the E8 locomotive onto Track 1. Larry Benedict, Andy Chinn, Alan Rybarchyk, and Kyle Sikes all had turns at the throttle. It was also the first time that we employed the newly-repaired bell.

January 14, 2012
The electrical cabinet was blown out with compressed air, in the hopes of solving some of the recent electrical glitches. Severe dust storms really take their toll on the unsealed equipment.

December 03, 2011
Lionel Trains is working on a new sound-equipped model of a Baldwin ‘Centipede’, a monster locomotive that contained two of the same 608SC diesel engine that is in our Baldwin. Wanting authentic sound for their model, they contacted the museum about recording the sound of our locomotive. Our locomotive has one of the very few remaining, operating examples of that model diesel engine. After a bit of negotiation and planning, the date was set for last Saturday.

The recording engineer showed up shortly thereafter, and set-up his equipment while we did our own preparations. Four microphones were placed: a stereo pair about 25 feet from the locomotive, another one near the air compressor, and a fourth next to the turbocharger. Another tiny recorder with built-in microphone was placed in my breast pocket, so I could make a running commentary.

When the time came to start recording, a whistle was blown to time-stamp the multiple recorders, and I pressed the big button. Nothing. After several attempts, much muttering under my breath and stroking of the control panel, we finally discovered that one of the starting contactors was welded shut. Since everything electrical is interlocked, that was preventing the starting circuits from energizing. A quick poke with a screwdriver got it unstuck, and the locomotive roared to life. The batteries, my biggest concern, turned out not to be a problem after all.

It did run a little rough at first, perhaps due to some sticky actuators on the fuel injector pumps. The RPM was ‘hunting’ up and down, and it took a while before the governor got it calmed down to a steady idle. Once things got stabilized and warmed up, we began following a ‘script’ supplied by Lionel. We recorded several sequences of increasing and decreasing RPM, and finally a shut down. After the sound engineer checked his recordings, we attempted another start-up, and again nothing happened. It wasn’t the starting contactor that time, but after turning switches on and off several times, whatever was malfunctioning cleared itself and the motor started. The RPM settled right down, so that was considered a ‘good start’. We repeated the same sequences just to make sure we got good recordings, all the while listening for planes overhead from the nearby airport. All of the sounds were recorded with the locomotive stationary, since we didn’t want any extraneous noises of squealing wheels-on-rails, etc.

As an aside, I think some of the electrical-contactor problems can be blamed on the horrible ‘haboob’ dust storm we had a few months ago. That dust got into everything, including the locomotives electrical cabinet. So we’re thinking a bit of cleaning with compressed air is in order.

Then we moved on to recording with the engine off, and captured the sound of the horn, bell, brake releases, and dumping the air. We also included some ‘bonus’ tracks of our wig-wag and crossing gate bells, and even got the local going by on UP’s Chandler Branch.

So, overall the day was a success, but not without a significant amount of stress and several periods of frustration. I did learn later that some malfunction occurred with the recorder in my pocket, thereby losing some of my commentary. So I’ll probably have to help Lionel figure out some of the sequences. For our trouble (not that we wouldn’t have been starting it anyway), Lionel will be making a $250 donation to the locomotive fund, and also agreed to supply us with a short start-run-stop recording to put on the museum’s website as a ‘hear the locomotive run’ feature.

Alan Rybarchyk had a very nice all-weather metal sign fabricated, showing a cut-away view of the locomotive. This will be on permanent display next to the locomotive.


November 26, 2011
Added 125 gallons of diesel fuel (cost $125). Added seven gallons of battery water. Lube oil checked okay. Placed charger on full-charge-mode in preparation for next week’s starting.


October 08, 2011
Removed the bell and ringer mechanism, and replaced the ringer with a new one, a Prime Manufacturing Corp., Model BR106. The new ringer was configured a little differently, but it fits fine and the clapper hits the bell only slightly lower than the original clapper. The air inlet was a different size pipe, so a reducing bushing was used. The added bushing lengthened the pipe, which necessitated loosening a pipe clamp so the mating pipe could be shifted upwards. Tested the bell with shop air applied to the locomotive – works great!

October 01, 2011
Checked lube oil and governor oil – both okay. Added some oil to the forward bearing of the forward traction motor blower. Oiled and exercised the fuel rack and the reverser.

Had a little trouble starting the engine. On the first two attempts, the engine did not turn over. On the third try, the engine barely started turning, then finally picked up speed and started easily. The battery charger was on ‘float’ since the previous Wednesday afternoon and on ‘charge’ since noon on Friday. Had some trouble with the contactors engaging for power, but that problem worked itself out after a few moves back-n-forth.

After a short period of operation, a burning odor was noticed in the cab: it smelled like burning electronics of a vintage newer than the locomotive. The odor was traced to the radio, and further confirmed by wisps of smoke coming from the radio. The power supply fuses were removed (which did not blow despite the failure of the radio). As this radio had stopped transmitting some time ago, and with the impending obsolescence of analog RR radio communications, no attempt will be made to repair or replace the radio (which is not original to the locomotive).

As before, the air compressor controller is not always kicking back on when the pressure drops below the set level. A sharp rap on the controller gets it working again. However, this time we experienced an additional problem after about 30 minutes of operation. The air pressure would no go above 70 PSI, despite the compressor sounding like it was pumping. This warrants further investigation.

September 24, 2011
Received two replacement water jumpers and gasket sets from SMS Raillines (at no charge!). Painted the water jumpers, and installed one of them on engine cylinder #1 with new gaskets and hardware. Refilled the coolant system and added 2 additional boxes of water treatment, Industrial Specialty Chemicals ISC-7537UP

Checked water level in a few battery cells, but all looked okay, so no water was added.

August 27, 2011
Bart Barton found an electrical panel with seven (!) of the Westinghouse circuit breakers that we’ve been trying to find. Replaced the one defective breaker in the marker light circuit, and will retain the remainder as spares.

Also verified that fireman’s side track light is working, which is controlled by the switch next to the fireman’s seat.

August 06, 2011
Scrubbed and washed the tops of the batteries with plain water. Added approx 2 gallons of distilled water to the batteries.

Removed the leaking water jumper on #1 cylinder, only to discover it had been previously patched with a bit of rubber and a hose clamp. Will contact SMS Railines to seek their advice on repair or replacement of the water jumper.

July 02, 2011
When operating the battery charger, noted that the meters’ LCD displays turn completely black with the combination of internally generated heat, the high ambient temperature and sunlight on the cabinet. The displays returned to normal operation after cooling down.

Discovered a coolant leak coming from a water jumper, which connects the water jacket in the block to the individual cylinder heads. Of course, it is the least accessible of the eight jumpers, on the rear-most #1 cylinder, behind the four exhaust pipes.

June 04, 2011
Started and operated the locomotive and performed some switching in the yard. Thanks to recent adjustments of the fuel rack, which equalized the fuel flow to each cylinder, the engine ran smoother than it has in our history. The sound of the engine no longer has the familiar 8-beat loping character, and the body of the locomotive no longer sways back-n-forth in sympathy. Further adjustments are planned for the fuel rack, using a non-contact thermometer to attain exhaust temperatures within the specified 15-degree difference between cylinders. Before the adjustments, temperature differences of over 100-degrees between cylinders were measured.

A few minor problems were observed: the air compressor controller required a periodic ‘smack’ to turn on; the horn valve is leaking great quantities of air when actuated (no doubt worn out after NTD!); and a noise was detected, apparently coming from the rear traction motor blower (this noise may not be new, but may now be audible thanks to the reduced rattling of the locomotive’s parts). The locomotive is getting very low on fuel.

May 22, 2011
Added just over three gallons of distilled water to the batteries. Since it had been a while since water was added, the relatively small amount of water required confirms that the new battery charger is working well without charging the batteries at too high a rate.

May 07, 2011
National Train Day! The cab and engine doors were opened for public inspection, and visitors were welcomed into the cab to blow the horn. Identifying signs were hung on the engineer’s controls, and a cut-away view of the locomotive was hung on the outside railing. A donation box was set-up for the locomotive, which yielded a disappointing $18 in donations. Idea for next year’s donation box sign: “Suggested Donation $1”.

The two sets of stairs built for public access to the locomotive’s cab were a huge help, and significantly increased the safety of the public entering and exiting the cab. Thanks to all who were involved with the stairs’ construction.

May 06, 2011
Completed the degreasing of the exterior of the locomotive. Positioned the locomotive at the north end of track #2.

Remounted the refurbished and repainted rear facing horn on the short hood. It sounds wonderful and nicely complements the sound of the other horn (which is not the same model). A shut-off valve was installed so that only the front-facing horn would be operational for National Train Day.

April 23, 2011
Continued with degreasing of the exterior of the locomotive. Painted the horn mounting plate on the short hood, in preparation for remounting the horn.

April 16, 2011
Continued with degreasing of the exterior of the locomotive. Painted the refurbished horn and its mounting bracket.

April 09, 2011
Began the long process of degreasing the exterior of the locomotive in preparation for National Train Day.

April 02, 2011
Did some further troubleshooting on the track light, but the bulb-to-socket adaptor used for continuity testing may not have been making contact, so tests will be repeated later. Discovered two more track lights, above the handrails on the ends of the locomotive. One end appears to be complete with socket and shade, the other end has neither.

Adjusted fuel rack levers for more equal settings between cylinders. The two cylinders (#3 and #7) with the highest settings were also the two with the highest temperatures when measured Jan-22. New temperature readings will be taken to determine if the cylinders are more balanced now, and if more adjustment is required.

Received the good news from The Horn Doctor that the horn needed no new parts, and only required a good cleaning. He says it is the nicest Westinghouse E2 Pneuphonic he’s ever heard. Total bill is $59 including return shipping.

March 26, 2011
Installed removable Plexiglas cover over the cab electrical switches, to prevent visitor tampering.

Stenciled “Emergency Fuel Cut-off” signs on both sides of the locomotive.

Before starting, noticed that not all of the fuel rack actuating levers were providing the same action on each fuel injector pump. Adjusted set-screws on three cylinders (#1, #4 and #5) so that the rack levers began actuating the pumps as soon as the rack began to turn.

Started easily, RPM was high initially, but settled down to normal after a few minutes. A little smokier than usual, with occasional detonation sounds like one or more cylinders were firing harder. Both the smoke and uneven running smoothed out after less than an hour of running.

Reverser gave no problems. Ran for about two hours. Used locomotive to pull about six freight cars and the steam locomotive back about 3 feet, to expose a new section of the steamer’s crosshead guides and piston.

Later comparison with cylinder temperature readings (taken on Jan 22) show some correspondence between the lowest temperatures and the too-low mis-adjusted fuel rack levers on cylinders #1, #4 and #5. Need to investigate if some of the actuating arms may be mis-adjusted too-high on the cylinders that are running the hottest.

March 19, 2011
Did some troubleshooting on the non-functioning fireman’s side track light. Bulb is good, socket is good, wiring connection to socket is good, but no power is present at the socket. There is no short circuit between the two conductors feeding the socket. Found some cut wires in the rear of the electrical panel, but was not able to physically trace the wires. Will rig up a ‘long wire’ continuity tester to see if any of the cut wires are for the track light.

Found specification on locomotive light bulbs: size A19, 50-watt, 75-volt, Rough Service. Industry-standard part number is ‘50A19/RS 75V’, and found several on-line vendors who sell them. However, the current supply of 60-volt bulbs may last a while, so no purchase will be made at this time.

Installed a ball valve in place of the non-existent Emergency Fuel Cut Off valve, and connected the three pull-cables. Tested operationally – works okay. This is a temporary solution until a proper valve can be found, or the old one rebuilt. Painted cable pull-handles red.

Discovered another bad circuit breaker, same type as before. Suspect the recent switch failures may be caused by visitors’ overzealous switch-flipping. Designed a Plexiglas cover to prevent access to switches.

March 2011
Received new Bell Ringer from Dayton-Phoenix
Fabricated shipping crate and sent horn to Ken Kanne, The Air Horn Doctor.
Replaced circuit breaker for front marker/class lights.
Replaced all outside bulbs, all work except for fireman’s side track light.
Replaced fuel shut-off valve with temporary ball valve and strung cables, painted loops red.
Battery charger – added cable clamps inside to support heavy input/output cables. Pop-riveted broken door hinge.

February 26, 2011
Started the locomotive, all systems good, did some switching.

January 22, 2011
Started, all good, Added oil to crankcase 10-12 gals? Used a non-contact infrared thermometer to read the temperatures of the exhaust manifolds, cylinders numbered back to front:

Cylinder Temperature F
1 95.8
2 115
3 216
4 123
5 86.6
6 137.6
7 198.7
8 125.1

Removed rear horn for repair, had to remove dynamic brake louvers to access attaching hardware.

August – December 2010
No repeat of the problem with the air compressor controller has been observed.

An attempt to start the locomotive on October 9 failed, low batteries

Some further troubleshooting on the Nife battery charger found that it was blowing a fuse on one leg of the 480-volt, 3-phase input. The cause was traced to a shorted transformer primary. The Nife charger was permanently put to rest.

A ‘new’ charger was envisioned using an on-hand CTS power supply/battery charger, built in 1979 for a Canadian National passenger car. Fortunately, some time ago we obtained complete documentation on this unit, which helped to understand its operation with a view towards re-purposing it as a locomotive battery charger.

Ken Knierim took the CTS power supply to his company’s shop, cleaned the interior, did load testing, and reduced the current limiting from the factory-set 230-amps to a safer 50-amps. Ken also added a digital voltmeter and ammeter to monitor the output. Andy built a 4000-watt resistor bank for testing the battery charger. Output voltage is adjustable, and a two-position switch changes the output voltage from a float level to a full charge level. The unit operates on 230-volt 3-phase. The cabinet’s doors were cleaned of old gasket and the gasket replaced. Standard procedure is to run the charger every two weeks, for 24-hours at a time. Charging characteristics have been very healthy, with specific gravity readings the highest we’ve seen in a long time. Water consumption has been low. Most importantly, the batteries are doing a fine job of starting the locomotive!

Starting w/ cylinder cocks open – first attempt after new charger is in use
Dec 10th. Cranking was robust. Three cylinder cocks were left open during cranking, a practice which we probably won’t repeat, due to the deafening popping sound and flames shooting out (poor Alan had the job of closing the cylinder cocks under these conditions).

Oiled body door hinges, replaced missing hardware on door locks.

One consistent problem observed during operation has been a sluggish reverser. Initially, the reverser must be rotated by hand, but after warm-up, the unit begins working ok. This needs some further investigation, and will involve at least further lubrication, and possibly rebuilding of the actuating pneumatic cylinders.

August 14, 2010
The locomotive was started and performed extensive switching in the yard, the first time in several years. Two problems were observed, neither of which interfered with the activities. The air compressor would not kick back on after the pressure dropped below the set point, but a sharp rap to the controller got it working. This process was repeated several times, so clearly something is sticking in the mechanism. Also, the cab radio seemed to receive okay, but transmissions to ground crew could not be heard.

Information on the Nife battery charger has been discovered in the equipment files, which may offer some understanding of its operation.

July 31, 2010
Started & ran for about one hour. Initial cranking was a little sluggish, but otherwise starting and running were okay.

July 24, 2010
Cleaned up some dirty oil-dry under the front hood, and spread some more oil-dry to finish the job. Repaired the leaking load controller oil line by splicing in a new section. The original compression fittings were of the “Imperial” type, and no compatible replacements could be found.

July 17, 2010
Attempted to repair the load controller’s oil line, but found an odd type of compression fitting instead of the expected flare fittings.

July 4, 2010
Attempted an informal twilight photo session prior to the fireworks celebration. Discovered that only one of four marker lights are working, and only one of two track lights.

July 3, 2010
A second oil filter gasket was purchased with the idea of using two gaskets, but the second gasket was considerably thicker than the first one. Therefore, only the newer, thicker gasket was installed. The lid-attachment hardware was also replaced with new locknuts, washers, and lockwashers.

Added oil to crankcase and added Industrial Specialty Chemicals ISC-7537UP water treatment to the radiator system.

Started & ran for about one hour. The oil filter lid stopped leaking. A minor leak was noted on the ¼” oil line to the load controller, due to a crimp in the copper pipe.

June 19, 2010
Reinstalled the Load Controller’s secondary mounting brackets and the enclosure itself, and reinstated pneumatic, hydraulic and electrical connections.

Work done to the Load Controller included replacing the Load Controller’s hydraulic cylinder piston cup, cylinder end seal, missing retaining clip, cable ties, vibration mounts, door gasket, window gasket, door retaining screws, and exterior flex conduit. Cleaned the interior of the cabinet and repacked the air cylinder linkage bearings. Cleaned the cabinet, door, and mounting brackets down to bare metal and repainted them.

June 12, 2010
In response to continued oil leaks from the oil filter, the lid was removed and we found that the new gasket is not thick enough to provide a good seal. We also found that despite recent super-George tightening of the hold-down toggles, the nuts were not very tight. This indicates it might be a good idea to check the hold-downs before each operating session. Also, the original nuts and washers will be replaced with locknuts and new washers. We are currently in contact with the Locomotive Company to determine why the gasket they supplied is not working.

Re-installed the primary mounting bracket for the Load Controller.

May 28, 2010
Removed the Load Controller enclosure and mounting brackets, in preparation for repairs and a major cosmetic overhaul. The two major problems are leaking oil from the hydraulic cylinder and the completely disintegrated rubber vibration mounts.

May 22, 2010
Added water to the batteries. Looked at the Load Control box, and it does appear that the oil leak is coming from the hydraulic cylinder.

Locomotive started very easily, and ran for about 1 hour. We would have run it longer, but the leak from the oil filter is getting worse and losing lots of oil.

May 08, 2010
National Train Day! Once again, the locomotive was a popular attraction at the event, with the horn blowing all day! This year we had visitors exiting from the fireman’s side, which greatly improved the flow of traffic through the cab. Still, the steps are difficult to climb for some people, so we might look into building wooden steps to make the climb safer and easier.

May 01, 2010
Cleaned the interior of the cab, and exterior of the engineer’s side. Alan Rybarchyk presented a poster-sized diagram of the locomotive’s equipment, to aid in the education of visitors at National Train Day. Alan also made small interpretive tags to hang on the cab controls.

April 29, 2010
Moved the locomotive several hundred feet north, away from the other display equipment. Stretched out four air hoses connected end-to-end, and applied shop air to the locomotive to test the connection for National Train Day’s horn blowing.

April 24, 2010
The battery charger is being run weekly, but the charger runs for only a short time before shutting off, and water consumption is way down. This indicates the batteries are being well maintained and not requiring much charging.

Started the locomotive, but shortly thereafter, the fuel pressure began to drop down to 10 PSI, and the engine began to falter. Shut down the engine, and removed the emergency fuel cut-off valve. Upon restart, the pressure returned to the previous (but incorrect) 50 PSI, and it ran fine for the remainder of about 90 minutes. Unlike the last running session, the engine produced only minor smoke.

Oil continues to leak from the main oil filter, despite the new gasket and re-tightening of the lid bolts. Also discovered a new oil leak coming from the load control box. As the oil was clean, it is probably coming from the hydraulic cylinder that is connected to the governor.

April 17, 2010
Re-installed the emergency fuel cut-off valve, and re-strung the actuating cable. Tested the operation of the valve with the fuel pump running. Whereas we normally get 50 PSI fuel pressure without the valve, the pressure was barely 25 PSI with the valve in place. Not only was this a surprising difference in pressure, our ‘normal’ reading of 50 PSI is contrary to information in the operation manual. Due to pressure bypass valves in the fuel circuit, the normal reading should be no more than 25 PSI. This puts into question the operation of those bypass valves, as well as the apparent constriction of flow through the emergency cut-off valve.

April 03, 2010
Discovered that *#%/@ thieves had stolen the output cable from the battery charger. Fortunately, the old cable ripped clean from its connection inside the charger, so there was no other damage. A spare cable with connector was on-hand, so it was replaced.

Replaced the fuses for the radio circuit, which had evidently blown when the starting contactors stuck and the knife switch was opened under load, causing a huge electrical surge.

March 17, 2010
Started and ran the locomotive for about two hours. For reasons unknown, the exhaust was particularly smoky that day, but otherwise the engine ran fine. Got some great photos with a huge plume of smoke rising hundreds of feet into the air.

March 6, 2010
Started & ran 1-1/2 hours.

February 20, 2010
Added 12 gallons of water to the batteries. Hydrometer reading for all cells was in the ‘green’ zone. Started the engine, but noted that the oil filter leak was leaking. Stopped the engine and tightened the oil filter lid. Restarted the engine and ran for about 1-1/2 hours.

February 5, 2010
Having renewed faith and a new theory, tried the Nife charger again, but this time with the “mystery potentiometer’ fully CCW before turning it on. Eureka! Got about 30 amps charging current. The function of this control is uncertain, and it may be just a coincidence that the charger started working.

February 4, 2010
Upon completion of another cycle of charging, tried the Nife charger again. Still nothing. Tried turning the ‘mystery potentiometer’ from CW to CCW on the power supply, with no result. Went home disgusted.

January 25, 2010
Resumed charging the batteries one-at-a-time, this time for about one day each.

January 24, 2010
Tried the Nife charger again, but it would still not put any current into the batteries.

December 30, 2009
Began again the process of charging the batteries one-at-a-time for three days each, using the home-built ‘8-volt’ charger. Setting the charger at 9.3-volts yielded an initial charging current of about 40-amps, which dropped down to about 5 amps after three days.

October 03, 2009
Installed the last four engine inspection covers with new gaskets.

The crankcase dipstick was barely showing any oil, so approximately 40 gallons of oil was added. This did not fill the crankcase, but it did get the level above the ‘low’ mark.

Attempted to start the engine. The engine turned over okay with the cylinder cocks open, but once the cylinder cocks were closed, the engine would not turn over. When the start button was released, there was no sound of the starting contactors opening. Knowing that this meant the contacts had welded shut, the battery knife switch was opened immediately. This resulted in a huge arc from the switch, with bits of molten copper sprayed on the floor of the cab.

Re-connected the Nife charger, but the batteries had sufficiently discharged to the point that the Nife charger would not work.

September 28, 2009
Completed the process of charging all eight batteries. All batteries exhibited a similar charging profile and final voltage. Connected the Nife battery charger, which began to work again since the batteries now had a decent charge. Charging current was a steady 18 amps. The charger was left to run for another four days.

September 19, 2009
Cleaned and painted the last four of the engine inspection covers. Cleaned up the oil-dry below the engine inspection covers, which had been put there to soak up the oil that leaked past the old gaskets.

September 12, 2009
Began the process of charging the batteries one-at-a-time for two days each, using the home-built ‘8-volt’ charger. Setting the charger at 9.3-volts yielded an initial charging current of about 40-amps, which decreased to about 15-amps after two days of charging. One minute after removing the charger, the battery voltage was about 8.8-volts. Added water after charging each battery: about 1/3 gallon each.

August 14, 2009
We had plans to do extensive switching with the locomotive today. Attempted to start the engine but the batteries were too weak. Welded the starting contactors twice, but they were easy to break free.

August 8, 2009
Applied gasket sealer and reinstalled the oil filler plate and cap.

Partially drained the coolant water (from the engine only) to allow removal of the defective drain valve. Installed a new brass valve (boiler drain type) and refilled the coolant system with plain water.

August 1, 2009
Applied new gaskets and re-installed the first four inspection covers on the exhaust side.

July 25, 2009
Removed the next four inspection covers (exhaust side), their corresponding retaining bars, and the oil filler plate. All parts were cleaned and repainted.

July 18, 2009
Applied new gaskets and re-installed the inspection covers (8 places) on the engineer’s side. This completes the work on that side. Tapped the drain on the crankcase and got only oil, no water. Pre-lubed the engine. Batteries were still weak, but the engine did finally turn over and start. Ran for about 1 hour.

A few observations:
The battery charging current goes way down when the headlights are on. This suggests that the headlights should be turned off when maximum battery charging is desired.

No oil leaks were observed on the engineer’s side inspection covers (as expected).

Some oil was seeping from the exhaust-side inspections covers (as expected: this side hasn’t been reworked yet), although one of the leaks was coming from somewhere above the inspection cover. Source is unknown at this time.

Some oil was still seeping from the main oil filter, around some of the cover’s hold-down toggles. Cause is uncertain.

July 11, 2009
Removed the next four inspection covers and their corresponding retaining bars. All parts were cleaned and repainted.

July 02, 2009
Removed four of the sixteen inspection covers, the corresponding retaining bars, and the oil filler cap. All parts were cleaned and repainted.

Checked the crankcase, and no increase in level was observed. Dare we suggest that the water-in-the-crankcase problem has been fixed?

Connected the battery charger, but it did not put out any current. It is unclear whether the charger has an intermittent problem, or whether is refuses to charge the batteries once they discharge below a certain level. It is rather hard to tell with the batteries in their current poor condition.

June 30, 2009
Ordered new engine inspection cover gaskets (Baldwin p/n 600- 04-215-TLC) at $27.50 each, from the Locomotive Company. They have 6 pcs in stock for immediate shipment; the balance will be backordered, expected several weeks later.

June 27, 2009
Re-installed the oil-filler access plate. Used foam gasket material as a temporary seal in case we need to remove it again. Will seal properly later if the water pump fix is deemed ok.

Lubricated and exercised the fuel rack.

Lubricated and exercised the reverser.

Pre-lubed the engine for about 1 hour.

Manually barred-over the engine to conserve battery power for starting.

Attempted several times to crank the engine, but the batteries were too weak to effect more than a partial revolution of the engine. This was not surprising due to the poor state of charge on the batteries.

Waited several minutes, and amazingly, the engine started cranking and finally started. This was surprising – almost as if the batteries dug way down and found a few extra electrons. Once it was running, the ammeter indicated a good level of battery charging, which tapered-off over time as expected.

Ran the engine for about 90 minutes, which got the coolant up to the rated operating temperature of 160 degrees F. The level in the crankcase was monitored frequently, with no rise in level detected. This might indicate that the water-in-the-crankcase problem has been fixed. A final determination will be made on that subject after the engine has cooled and sat for a while.

Minimal leakage was observed from the oil filter since replacing the gasket.

Considerable oil leakage was observed from several of the engine inspection covers. Apparently our recent removal of these covers disturbed the old gaskets sufficiently that they no longer seal. New gaskets will be ordered.

Oil leakage was also observed from the oil filler access plate. The majority of the leaks were coming from the holes where the mounting studs are missing. Enough gasket-sealer will fix that.

The battery charger was hooked up after the engine was shut down, and it started working again, charging the batteries at a steady 12 amps. The same rate of charging existed the next morning.

July 18, 2009

Three video clips of the engine running.

Clip 1 Clip 2 Clip 3
6-27-09 - Interior of the cab during the startup. 7-18-09 - Engineer blows horn and starts moving towards camera. 7-18-09 - Engineer blows horn and starts moving towards the camera.  Engine father away from camera.

May 09, 2009
National Train Day! The locomotive was hooked up to shop air so that visitors could blow the horn. This was wildly popular, with the horn blowing almost constantly from 9 AM to 4 PM. Boy, were we tired of hearing that after a while! But it was well worth it considering the fun that everyone had.

April 25, 2009
Installed the water pump’s outlet pipe with associated hose and clamps. Filled the cooling system with water. No leaks were observed on any of the hose or pipe connections, but a small occasional dribble of water came from the pump. We might have damaged the water seal when we had to rotate the halves of the pump into alignment.

After filling the system with water, it was discovered that the water drain valve wouldn’t shut off completely. As a temporary measure, a garden hose Y-adapter was put on the valve with both directions closed to stop the flow of water. This valve will need to be replaced.

Received the ‘post mortem’ report from The Loco Co, regarding the old water pump. Additional charges of $150-165 will be levied, to bring the pump up to the state where it needs only new seals and bearings. Jim said we were lucky: a shaft key was nearly sheared off, which could have allowed the impeller to hit the housing, causing extensive damage.

Jim confirmed that the rebuilt pump should not be leaking. He offered to send us a new water seal, and loan us a tool to pull the pump apart. We’ll wait until the engine is running before making any decisions about that. Admittedly, the prospect of pulling out the water pump again is not a pleasant one.

April 11, 2009
Replaced the defective stud on the water pump, and installed three new hose clamps. Work session was cut short by rain.

April 2, 2009
Removed the studs and rotated the pump halves into the correct orientation, and reassembled the pump. One of the six studs was damaged, so it was left-out of the top-most position, to be replaced later.

Hoisted the pump back into the engine, and bolted it into position. Reinstalling the chain on the sprocket was very difficult: the ‘shoehorn’ device did not work, as there was not enough clearance even for the very thin metal. The final solution involved barring-over the engine and slowly working the chain back onto the sprocket. As the normal barring position on the engineer’s side of the locomotive produced the wrong direction of rotation, barring was done on the other side of the engine. This required temporary removal of the turbocharger drain pipe, to gain access to the toothed gear on the engine. Installed three new hoses and a new flange gasket on the inlet pipe, and bolted the pipe flange. Installed one new hose clamp on the largest of the hoses.

April 01, 2009
Talked again to Jim at The Locomotive Co. Further reflection on the issue of rotating the pump halves revealed that the studs must also be removed. This would allow rotation of the halves without separating them from each other.

March 28, 2009
Obtained a pulley and large hook to aid in hoisting of the pump, which was a great improvement over the previous arrangement of just the rope slung over a bar. Hoisted the pump up and out of the engine and back down to the work table. Attempted to follow the procedure for rotating the pump, but the two sections would separate only about ¼” or so, and then stop. Not being sure of the internal arrangement of parts, we did not want to apply much pressure in an attempt to force it apart.

Made a U-shaped piece of 1/32” stainless steel to act as a ‘shoehorn” to aid in replacement of the drive chain. Unfortunately, not enough progress was made to see how the idea will work.

Attempted to remove the broken-off studs around the oil-filler access plate, but after struggling with the first one, we discovered that the studs had been tack-welded to the engine.

Verified that the new gasket for the oil filter is the correct size, but did not install it yet.

March 23, 2009
Talked to Jim at The Locomotive Co, and he indicated that the problem with the pump could be easily remedied be removing the nuts securing the drive housing to the pump housing. The two sections would then pull apart, and drive housing could be rotated and reassembled onto the pump housing in the desired position.

March 21, 2009
Removed the remaining water pump mounting studs, including one that had broken off during a previous repair. Installed eight new ½-13 x 2” studs. Hoisted the rebuilt pump into position, but discovered that no possible orientation of the mounting flange would result in the proper position of the water output pipe flange. Closer examination and comparison to the old pump revealed that the mounting flange has 8-holes, whereas the connection between the drive housing and the pump housing has 6-holes, which means that different combinations of assembly position are possible.

March 17, 2009
Received the rebuilt water pump and gaskets from the Locomotive Co. Received all the other hoses, clamps and hardware necessary for the project.

March 07, 2009
Removed a few of the mounting studs for the water pump – a difficult process due to the awkward position and the extreme tightness of the studs in the engine wall. Replacements for the existing 2-1/2”-long studs are proving difficult to find. 2” studs are readily available, and based on the flange thickness of the rebuilt pump headed our way, they should be sufficiently long.

February 28, 2009
Cleaned-up the two main pipes for the water pump inlet and outlet, in preparation for reinstallation of the pump.

Matt presented a Baldwin Service Bulletin explaining that different water pump part numbers have differing thicknesses of mounting flange, and therefore may require a different mounting stud length. Will contact the Loco Co to find out the flange thickness of the rebuilt pump they are sending.

February 27, 2009
Added 6-1/2 gallons of distilled water to the batteries.

Fabricated a long-handled scraper to aid in removal of gunk from the forward area of the bilge. In amongst the goo removed, ‘treasures’ found included a pipe wrench, screwdriver, chisel, two hose clamps, and numerous nuts, bolts and washers. Also found many small shards of expanded metal screen. This is thought to be the remnants of the long-gone protective cage around the traction motor blower drive belts. A thrown belt probably shattered the cage and some of the fragments dropped into the bilge.

Cleaned the top of the oil filter, and found the word “Michiana” stamped into the metal.

Measured for replacement gaskets and hardware needed for the water pump reinstallation.

February 26, 2009
Sent a Purchase Order to the Locomotive Company for the rebuilt/exchange water pump, water pump mounting gasket, and gasket for the Michiana oil filter.

February 24, 2009
Scraped gunk from around the area of the water pump. With the water pump out of the way, the bilge is somewhat accessible, so a ‘test scrape’ was made to see how deep the goop is: less than 1”. This would be an ideal opportunity to clean out the bilge, but some sort of long-handled goop-scoop will need to be devised.

Checked the battery water: it needs replenishing.

February 21, 2009
Disassembled the two pipe flanges on the water pump’s main inlet and outlet and removed the connecting pipes.

Rigged a cross-bar above the water pump, and used rope to secure the water pump. Attached a rope with hook to the drive chain so it wouldn’t fall back inside the engine after removal from the sprocket. Removed the nuts attaching the pump to the engine, and with great difficulty, got the chain off the pump’s drive sprocket. This last step was complicated by the fact that the pump is mounted with studs threaded into the engine, and the studs made it difficult to angle the pump to aid in removal of the chain. As several of the studs are damaged (and one is broken from a previous repair), we will likely remove all the studs and replace them.

Lifted the pump from the engine compartment, and then lowered it to the ground.

February 20, 2009
Loosened the clamps on four hoses associated with the water pump. Loosened the chain-tensioning idler wheel for the water pump drive.

Removed the top of the Michiana oil filter in order to measure the gasket. The existing gasket is homemade and is leaking. Will attempt to obtain a proper gasket from the Locomotive Company.

February 15, 2009
Drained the water from the cooling system in preparation for removing the water pump. The Locomotive Company will be providing a rebuilt pump in exchange for our defective one at a cost of $980.

December 20, 2008
Cleaned up the oil-dry that had been spread on the floor of the radiator compartment. This did an excellent job of cleaning up the oil and sludge. Some new oil-dry was put down in front of the oil filter, to absorb some of the oil still leaking there and to act as a dam to keep the oil from spreading into the rest of the area.

November 29, 2008
Drained water from the crankcase and lube oil filter. Only got a quart or two.

Connected the battery charger, and got a steady 30 amps of initial charging current. Normally, a fluctuating current of 5 to 10 amps is observed. The higher current may be due to not fully recharging the batteries during the last start-up, or the colder/wetter climate may have caused the power supply to operate differently than it has in the past (there is a suspicion that the power supply has a problem.

November 15, 2008
Discovered that all the water had leaked out over night. The hose clamps that were tightened the previous day had originally been installed too close to the end of the hose. Tightening the clamps caused one of them to slip off the end of the hose, allowing all of the water to leak out. Repositioned the offending clamp and re-tightened it. Refilled the system with water and it held tight.

Drained a little more water from the crankcase (maybe 1-2 quarts).

Preformed a pre-lube on the engine and discovered an oil leak where the oil pipe connects to the heat exchanger. This joint was not properly tightened when the pipe was re-installed (bad mechanic!). Bolts were tightened and the leak stopped.

Oiled traction motor blower bearings, injector plungers, and added a little oil to the governor.

Pulled the locomotive out from the other equipment and started the engine. It started easily, and ran fine after un-sticking one of the injector plungers. The water pump leaked externally – more than any time previous. Ran the locomotive back n’ forth a bit, and watched for any problems associated with the water in the crankcase problem. Nothing observed, so the engine was shut down after about 30-45 minutes.

Removed the right-side inspection covers on all 8 cylinders, and saw no evidence of a water leak from the cylinder liners or heads. Removed the oil-filler cover plate, and saw a considerable amount of emulsified oil (a frothy mixture of water and oil) in the area around the chain drive.

Based on the concentration of emulsified oil around the water pump drive chain, and the significant external leak from the water pump, we will proceed with rebuilding of the water pump. It is still not certain that this is the cause of the water in the crankcase, but so far nothing else has suggested itself to be the cause of the leak.

November 14, 2008
Replaced radiator vent hose with new hose and clamps.

Replaced the oil-filler cover plate (temporarily with just two nuts).

Tightened the clamps on the lower water hose that was leaking during previous pressure tests of the system The clamps were indeed loose.

Filled radiator with water.

Collected this info from the Heat Exchanger:

Brand Harrison
Model 1125-107
s/n RR-2874
Cust D-60098
Date 12-10-51

Note the build date of 1951, after the delivered date of the locomotive. This would indicate that this is not the original heat exchanger.

November 01, 2008
Drained the water from the radiator system and removed the leaking vent hose. This was not an original hose, but was nonetheless brittle with age. Unlike the other hose we replaced, which had crimped fittings, this one had been replaced earlier with plain hose, barbed nipples and hose clamps, so it will be easier and cheaper to replace this one.

October 25, 2008
Used a squeegee to move the remaining oil, water and sludge from the floor underneath the radiator area. Since the grime was too liquid to pick up, the mess was pushed over the edge into the bilge. Oil-dry was spread over the area in an effort to soak up the remaining oily residue.

Re-assembled the pipe running from the metal-edge oil-strainer to the heat exchanger, using new pipe flange gaskets.

Removed the left front body panel to gain better access to the under-radiator area, and to look for the source of an oil leak from somewhere near the bottom of the oil filter. Nothing obvious was found – it is leaking from either the main outlet pipe, or one of the smaller drain connections. The source probably won’t be obvious until the engine is started, but at least the area is now more visible.

Drained an additional, smaller amount of water from both the oil filter and crankcase (maybe one gallon total). The dip stick is still reading above FULL, but is lower than before.

Noted water leaking from one of the small radiator vent hoses (a counterpart to the one we replaced a few weeks previous). The hose looks ready to burst.

October 18, 2008
Cleaned the hardware for the flanged pipe connections.

Scrapped the floor of the under-radiator area, removing over a gallon of thick goo. Unfortunately, with the absorbent qualities of this goo now removed, the remaining liquid oil quickly spread out over most of the floor area. This will need to be scrapped toward the rear edge of the floor, where it will hopefully drain into the bilge.

Opened the drain valve on the bottom of the metal-edge oil strainer, and got only a little water.

Chipped away years’ worth of crud from around the oil filter drain valve and plug, and drained several gallons of water from the oil filter. The drain valve on the metal-edge strainer had been left open, and once the oil filter began draining, considerably more oil and water was released from the strainer (adding to the mess on the floor).

Chipped away years’ worth of crud from around the crankcase drain valve and plug, and drained many more gallons of water from the crankcase.

Opened the drain plug on the camshaft trough, but got only a few drops of water.

Ordered and received new pipe flange gaskets to replace the ones on the removed oil pipe:

Size Material ANSI flange McMaster-Carr p/n location
4-hole, 7-1/2” OD Aramide/Buna-N 150 lb 9472K47 heat exchanger
8-hole, 6-1/2” OD Expanded PFTE 300 lb 8903K89 relief valve
8-hole, 9” OD Aramide/Buna-N 150 lb 9472K49 oil strainer

October 4, 2008
Added distilled water to the remaining six batteries (about 4-1/2 gallons).

Still no sign of water leaking from the heat exchanger. Reinstalled the heat exchanger cover plate, after much difficult scrapping of the old gasket. Resealed the cover with gasket compound.

We found a home-made metal plate sandwiched inside a flanged pipe connection, which effectively blocked the path to the pressure-relief valve. The purpose of that valve is to bypass the oil flow around the exchanger if the exchanger becomes clogged. Our guess is that the valve became defective at some point (i.e. open all the time), so the solution was to block the flow rather than fix the valve. Interestingly, the metal plate had a small tab sticking out, as if to remind the mechanic that it was a ‘temporary’ repair. Add this to the long list of quick n’ dirty repairs and bypassed safety devices that have been discovered on this locomotive.

Today’s wild guess: Based on the fact that no additional leakage has been observed since the initial discovery of water in the crankcase, despite weeks of water sitting in the system, plus several sessions of additional pressurization, it is felt that the leak must be occurring only when the engine is hot – either when it is running, or immediately after shut-down. Either that or someone stuck a garden hose in the oil filler. Nah.

September 29, 2008
Still no sign of water leaking from the exchanger. Perhaps the water observed in the exchanger was merely accumulated there, and not the actual source of the leak.

September 27, 2008
Drained the heat exchanger via the bottom plug on the oil input side, yielding mostly water, and then some oil. Removed the large pipe from the oil input side of the heat exchanger that connects to the oil strainer and pressure relief valve. Removed the oil input side cover plate on the heat exchanger.

Stains on the inside of the cover plate show that the water level was up to the bottom of the pipe connection in the center of the panel. The heat exchanger core appears to be in perfect condition. No corrosion, no staining, nothing. Refilled the cooling system with water, and vented the air in the exchanger via the top valve. Observed no leaks from the exchanger tubes. Applied air pressure to the cooling system, and still no leaks observed from the exchanger.

Added distilled water to the right rear two batteries (about 1-1/2 gallons). Need more water to fill the remaining six batteries.

September 20, 2008
Re-installed the Plexiglas and gasket that had blown out of the cab’s left rear window, as a result of a recent storm.

Replaced the broken vent hose on the radiator system and re-filled the system with water. Pressurized the radiator system (on top of the water) to about 7-10 PSI. Re-inspected the cylinder liners and the water pump shaft, and again found no signs of water leakage. Barred-over the engine several revolutions, and still no signs of leakage (although the water pump did begin to leak externally).

Removed the right-front body panel (below the radiator) to gain access to the heat exchanger. Briefly loosened the bottom drain plug on the oil input side (where there should be oil only) and got a gusher of water coming out.

August 23, 2008
Installed the adaptor on the water filler pipe, blocked off the overflow pipe, and applied 7-10 PSI on top of the water in the radiator system. Immediately found the weak point in the system – one of the small vent hoses on the radiator burst. The hose was in very poor condition, and was probably original.

Drained the water in the system since it would be a few weeks before work would resume.

August 18, 2008
Inspected again the area around the water pump chain drive, but still no water could be seen. The level in the crankcase did not change.

Created an adaptor for the water filler pipe to allow compressed air to be applied while water is in the system. It is hoped that additional pressure may reveal the source of the leak.

August 16, 2008
Removed all 16 engine inspection covers, and examined each cylinder liner for evidence of leaks on both the inside and outside surfaces. No water or rust streaks were found. Although not an absolute indication, this hopefully means that the cylinder liner o-rings are still good, and that we do not have a cracked head.

Removed the inspection plate around the oil filler pipe to examine the area around the water pump chain sprocket. Cleaned out the oil, water and sludge (and an old oilcan cap) from the separate area under the chain sprocket. No water was observed leaking from around the shaft, although there is a rust stain there.

Used the air pump to remove additional water from the crankcase, although this was mixed with a lot of oil sludge. Afterwards, dipstick level measured about 4-3/8” from end-of-stick (still over-full).

Barred-over the engine in the hopes of breaking loose any seals that could be leaking. This did cause the water pump to start leaking from its housing, but still no leak was observed around the drive shaft.

August 14, 2008
Refilled the radiator system with plain water in an effort to locate the leak.

August 2, 2008
Pressure-tested the radiator system by connecting a source of compressed air to the drain valve, and plugging the overflow drain. System held 10 PSI for several minutes, with no observed air leaks inside or outside the engine. This test was inconclusive. Perhaps more pressure is required to detect a leak, but being a non-pressurized system, we were hesitant to apply more pressure for fear of rupturing something.

July 19th, 2008
The pre-lube pump was modified by removing the tube extension and strainer. This would allow the suction tube to rest directly on the bottom of the crankcase (a situation we would normally want to avoid so as not to draw upon the sludge at the bottom).

Placing the pump’s suction tube at the bottom-center of the crankcase, the water was pumped out (an estimated 20-25 gallons) until some oil-sludge began to appear in the effluent.

At that point, the pump was re-positioned to draw from the very top layer of the oil. This relatively untainted oil was then pumped through the lube oil system to expel any water that might be remaining in the various oil passages. That was a very good idea, as a surprising amount of water came down from the engine. This continued until the fluid draining down from the engine was mostly oil.

We will now wait until the water again settles to the bottom of the crankcase, and repeat the above process as many times as necessary to remove the majority of the water in the lube oil.

July 7th, 2008
Further thinking on the water leaking problem revealed that, if the leak was allowed to continue, enough water could end up in the crankcase to cause the crankcase to overflow. Checking the lube oil dip stick confirmed this suspicion – it was reading 1-1/2” to 2” above the full line.

The remaining water was drained from the coolant system to stop additional water from getting into the crankcase.

July 4th, 2008
The plan for today was to start the locomotive and perform extensive switching around the yard. However, upon removal of the pre-lube pump from the crankcase, a large quantity of ‘fish-eggs’ were noted in the oil draining down from the engine. This could mean only one thing – water was mixing into the lube oil. The likely cause of this leak is a failure of the o-rings at the bottom of the cylinder liners, although that is not certain.

The mission was cancelled with much reluctance.

June 30, 2008
Received delivery of 200 gallons of #2 diesel fuel from Brown & Evans Distributing. Since the delivery truck lacked a proper locomotive-type fuel delivery nozzle, some back-splashing occurred due to the strainer just inside the filler tube. This strainer was temporarily removed and filling continued without problems.

June 21, 2008
Replaced the original screws and nuts (10-32 x 1-1/4”) that had been removed to install the plastic covers on the headlights. Cleaned the twin sealed-beam units and the inside and outside of the headlight lenses. Headlights are now looking pretty good!

Received Board of Directors approval to spend as much as $1000 for diesel fuel. Fuel sight-gauge has been reading ‘empty’ for some time.

June 14, 2008
Removed the plastic covers over the front and rear headlights. Over the years, these protective covers had become clouded, and are no longer considered necessary now that the locomotive is less likely to be a victim of rock throwers.

Received a response from John Klemko at SMS: they use Nalco ‘Railcool 2114’ tabs water treatment in their Baldwins. Also, they have several examples of pump number -069 on their property, and indicated that some of the water pump parts are commercially available generic parts, with the remainder available from The Loco Co. John also sent a diagram and parts list specific to the -069 pump.

June 07, 2008
No evidence of coolant leaking now that only plain water is being used. Wrote an email to John Klemko, Shop Manager at SMS/Penn-Jersey Rail Lines, asking for advice on water-treatment type and sources for pump re-build kits or parts.

May 31, 2008
Checked battery water – added approx 2-1/2 gallons distilled water. Charged batteries.

Coolant had completely leaked out through the water pump. Re-filled the system with plain water so that it wouldn’t sit dry.

Got the part number from the water pump: 600-28-069. Unfortunately this is different than the two pumps for which we have documentation: 600-28-044 (packing-seal type) and 600-28-079 (rotary-seal type). Our pump appears to be of the rotary-seal type, although it is unclear how it differs from the -079 unit.

May 10, 2008
Received and installed two new brake system gaskets: Independent Brake Valve Mounting Westinghouse #PC 520078; and Self-Lapping Unit Westinghouse #PC 500849.

May 03, 2008
Pre-lubed and started the engine. The battery charging procedure seems to be working well – plenty of cranking power was observed, and the engine started promptly despite sitting since last October. The water pump leaked for the first few minutes and then stopped. Ran the engine for almost 2 hours, with the water temperature reaching about 150 degrees F.

Ran locomotive up and down the tracks: all systems seemed fine. At one point, the main reservoir lost most of its pressure. Turning the Control Switch off and then back on again caused the compressor to start running again. No further problems observed – intermittent contact somewhere?

April 28, 2008
Re-installed the Independent Brake Valve with a temporary fix on the blown gasket. Applied shop air to the locomotive, and the brakes finally released. Eureka! Ordered two new gaskets for the Independent Brake Valve.

April 26, 2008
Received the Automatic Brake Valve back from Pittsburgh Airbrake. Re-installed the Feed Valve and the Auto Brake Valve using new gaskets PC 15534 (Auto Brake Valve) and PC78000 (Feed Valve). Made new gaskets for the Sander Valves and installed those, too.

Put shop air on the locomotive – and Independent Brakes still wouldn’t release. However, the fact that the rebuilt Auto Brake Valve was no longer leaking air allowed the detection of a rather large (but quiet) leak from the Independent Brake Valve, apparently due to a failed gasket on the self-lapping unit. Removed the Independent Brake Valve from the brake pedestal.

The self-lapping unit was removed, and a bit of gasket sealer was applied in the area of the gasket’s failure. Brakes will be retested, and if this cures the problem, a new gasket will be ordered. If not, the entire Independent Valve will be sent to Pittsburgh Airbrake for overhaul.

April 19, 2008
Drained the radiator system – along with considerable sediment and rust. Replaced the radiator hose at the front of the engine, between the engine block and the water pump. Used wire-reinforced 4” ID hose, with new malleable-iron-bolt double-saddle clamps. Tight clearances required removal of the lower pipe to facilitate sliding the new hose into place. The pipe flange gasket was in reasonable shape, so it was reused along with some gasket sealer.

Ran fresh water from the top of the system, and allowed it to drain out the bottom. More sediment was flushed out. Refilled the radiator system with water and approx. 2 liters of NALCO 2536 PLUS. No leaks were observed around the new hose or pipe flange.

Received word from Pittsburgh Airbrake that the Automatic Brake valve has been rebuilt. They will ship by UPS, along with new gaskets for Auto Brake and Feed Valves. They were not able to reference a replacement gasket for the UB262J Sander valves.

Took photos of the Sander Valves to help identify replacement mounting gaskets, and emailed info to Pittsburgh Airbrake. If the gaskets are not available, they could be ‘home-made’.

April 07, 2008
Checked a sampling of battery cells, and found that the specific gravity reading had indeed improved slightly, indicating that the battery charger is doing some good.

April 05, 2008
Checked the batteries with a hydrometer. Measured three cells on each side, and all measured in the low red (SG 1.200) to middle white zone (SG 1.250). This is better than previous readings. Will repeat measurements again after 2-1/2 days of charging.

Measured the radiator hose that needs replacing, and actually found a new piece of the proper size, leftover from previous work.

March 29, 2008
Filled batteries with distilled water – about 2 gallons total. Charged batteries.

March 22, 2008
Charged the batteries. Fabricated a wooden crate for shipping the Automatic Brake Valve to Pittsburgh Air Brake for repair. Also ordered new gaskets for Automatic Brake Valve, Feed Valve, and two Sander Valves. Elected not to send the Feed Valve in for repair at this time.

March 15, 2008
Ken Kyer returned the two brake components un-repaired: BNSF’s brake shop doesn’t have the necessary parts or data books.

Wasn’t able to fully disassemble the Sander Valves. Cleaned and oiled as best possible. Gaskets are home-made and completely shot, so new ones will be required.

March 08, 2008
Polished the brass handle for the Automatic Brake Valve. Charged the batteries.

Removed two sander valves for re-building. These are Westinghouse Type UB-262-J, a simple solenoid controlled on-off pneumatic valve. These valves control whether the front or rear-facing sanders operate when activated by the engineer.

March 03, 2008
Re-installed four centrifugal dirt collectors, Feed Valve cover plate, and Rotair valve. Re-arranged the dirt collectors so that the two with drain cocks are first in line in the air system.

Applied shop air to the locomotive and made some brake system tests:

• Locomotive Brakes remain set for any position of the Automatic and/or Independent Brake Valves (not correct).

• Rotair valve now moves smoothly, and seems to be operating properly.

• Noted several air leaks (okay, many), especially around sander solenoid valves and sander valves. Finding air leaks with the engine running is impossible!

• Depressing the plunger on Dynamic Brake cut-out solenoid (mounted on the distributing valve) caused the locomotive brakes to release. This suggests that the distributing valve is working properly.

• Bailing-off the Independent Brake Valve caused the locomotive brakes to release. This suggests that the Independent Brake Valve is working.

• Automatic Brake Valve is constantly blowing air in Release Position (not correct). This suggests that the ABV is bad, and could be the cause of the locomotive brakes not releasing.

Removed the Automatic Brake Valve and the Feed Valve and gave them to Ken Kyer to have BNSF’s Phoenix Brake Shop do a rebuild.

February 23, 2008
Completed cleaning and painting of the four dirt collector bowls and Feed Valve cover. Obtained new nuts, washers, bolts and gaskets for re-mounting. Charged the batteries.

January 19, 2007
Cleaned the mounting surfaces of the centrifugal dirt collectors, MU air valve, and Feed Valve in preparation for reinstallation of the components.

Removed ‘junk’ and trash from the cab in preparation for the upcoming Annual Picnic.

January 12, 2007
Removed the bowls on four centrifugal dirt collectors. Three of them were only moderately dirty, but the fourth (located immediately before the first main reservoir) was completely packed with very hard dirt. All mounting gaskets were rock hard, and will be replaced, WABCO item #PC 75932.

Began the long process of removing the dirt in the bowls: the really dirty one will require hours of soaking and chopping (the dirt is about the consistency and hardness of #2 pencil lead).

Removed MU air valve (lead-trailing-dead control). Examination of the valve finally revealed how to operate this valve: by pulling up on the handle, and then turning it. Ignorant of this fact, we had never before been able to move this valve handle. The mounting gasket was rock hard, and will be replaced, WABCO item #PC 538818. The valve handle moved very stiffly: oiling freed it up somewhat.

Removed the cover plate on the Feed Valve. The mounting gasket was rock hard, and will be replaced, WABCO item #PC 81006.

Received Westinghouse 6SL Manual, but the included diagrams do not exactly match components on the loco.

October 27, 2007
Added plain water to the radiator. The locomotive was started successfully. Due to the Independent Brake’s current inability to release, the truck brakes were manually operated via the cut-out cock. This allowed the locomotive to move back-n’-forth a few times under its own power.

The search continues for proper documentation and/or assistance with the Westinghouse 6SL brake system.

July 28, 2007
Greased fuel rack fittings, oiled injector pump actuator rods, oiled traction motor blower fan bearings. Crankcase oil, governor oil, and radiator water all ok. Replaced rear fireman’s cab window ‘glass’ that had blown out in a storm (gasket is dried out and barely holds the glazing). Charged batteries and performed pre-lube of engine.

Moved the loco with the Plymouth away from the other equipment, and started engine and ran for about 1-1/2 hours. Batteries seemed to have plenty of starting power, and engine ran smoothly. However, the Independent Brake would not release, so it was not possible to move the loco under power. Unlike the last time this problem occurred, this occurrence was not a case of the Automatic Brake valve being in the wrong position.

July 14, 2007
Added battery water.

May 05, 2007
Continued with washing of the locomotive’s exterior.

April 28, 2007
Began the process of washing the locomotive’s exterior. Due to the long time since the last cleaning, and the large amount of oil and dirt accumulated on the roof, the cleaning started with a putty knife around the exhaust stack! The remainder was worked with degreaser and a scrub brush.

April 21, 2007
Topped-off radiator water (a considerable amount had been lost due to the water pump leak). Topped-off governor oil. Pre-lubed and started the engine, running it for about 2-1/2 hours. All systems operated properly. NOTE: fuel sight gauge is no longer showing fuel level. Glass is very cloudy and hard to see through, but this might mean we’re almost out of fuel!!

March 10, 2007
Added oil to the governor, topped-off the battery water (about 2-1/2 gallons total) and filled the radiator. Pre-lubed the engine and it started okay. Water pump leaked a steady stream, but stopped after about 30 min. Operated about 3 hours, with quite a bit of running back n’ forth.

February 10, 2007
Added water to radiator, pre-lubed the engine and it started okay. Performed switching for rearrangement of equipment (including moving steam engine).

February 06, 2007
Added lube oil to crankcase, about 30 gallons.

January 06, 2007
Pre-lubed the engine and it started okay. Water pump leaked a steady stream, but stopped after about 10 min. Ran for an extended period above idle, and the temperature got to 165 degrees F, after about 2 hours

WD-40’d the O-S-R switch, after which it seemed a little more positive in its action.

December 23, 2006
Pre-lubed engine. Despite cold (<40 degrees), extreme moisture due to fog, and spinning the engine electrically with cylinder cocks open, the engine started with enthusiasm. Ran for about 2-1/2 hours.

Added about ½ quart 30W oil to governor.

OFF-START-RUN switch gave some trouble. Its physical and electrical detents did not always remain in-sync, resulting in erratic operation. This needs some attention.

For most of the running time, the throttle was not responding. At the end, some fiddling with the O-S-R switch caused some contactors to operate that allowed the throttle to function. Ran the RPM up a little higher than normal. Due to being already well warmed–up, the engine ran quite smoothly. Nevertheless, it is unlikely the RPM got to the max of 600.

December 9, 2006
On P2 contactor, re-tapped the bad hole (used bottoming tap), and motor-tooled the contact finger’s seat to remove sputtered copper. Re-installed the contact fingers borrowed from the dynamic brake circuit. Swapped the arc chutes with D1 & D2, as the parts from those contactors were less arc-eroded.

Barred-over the engine, and it started again okay, more vigorous this time. Internal battery charging system is obviously working.

Observed the operation of the voltage regulator: the moving contact was vibrating and moving from left to right as engine speed varied (all in accordance with the descriptions in the manual). The moving contact wear-indicator showed plenty of life left. All other components and contact surfaces were in excellent condition.

Measured the battery voltage at the knife switch:
• After about 15 minutes running, it was 72 volts at idle, and 78 volts at higher RPM.
• After 1-1/2 hours running, it was 74 volts at idle, and 74.5 volts at higher RPM.

Note that regulation improves as the unit warms up (again, in accordance with the manual description). As the voltage regulator seemed to be working properly, no adjustments were made.

Replaced some of the lightbulbs in the marker and class lights. Some worked, some didn’t. As they were ‘used’ bulbs, it is not certain if the bulb or socket is at fault (probably both).

Reverser decided to work ok today.

December 2, 2006

A summary of the past months’ struggle to recharge the batteries:

The Nife Battery Charger is presumed defective. An inspection of the unit’s circuitry found a few loose connections, but its operation remains unchanged. So far, no luck on finding manuals etc. (Nife Inc is no longer, apparently absorbed into Saft Batteries). Charger contains three circuit boards of excessive complexity. Grand Canyon Ry has a replacement for one of those boards, and has agreed to donate it. There is no telling if this will fix the problem.

Battery Charger:
Nife p/n 4729-64-06828-89
Pullman p/n J-G12-001
Input: 480-volt, 3-phase
Output: 72 volts DC @30A

An attempt was made to use the ‘big yellow’ rotary-converter welder as a battery charger, but it had no output. Lacking a regulated output, it would have made a poor battery charger anyway.

Used a hydrometer to measure the Specific Gravity on all cells of all batteries. All measured at the worst end of the red zone (battery discharged). The batteries were D-E-A-D.

Lacking a way to charge the batteries as a group (which requires approx 74 volts), a single-unit battery charger was created by modifying the output of a 12-volt 50-amp power supply down to 9.3-volts. With an external reverse-current diode to protect the power supply (and a fan to cool the diode’s heatsink) and my automotive jumper cables, the total cost for this solution was nothing. And the wife asks me why I save all that ‘junk’.

The homemade charger worked very well. Charging current was typically 40 amps initial, 30 amps after 20 minutes, and then finally settling down to about 10 amps at the end. After charging each battery for three days (yes, a tedious 24-day process!), all cells had a Specific Gravity in the middle of the Red Zone. Improving, but still not enough.

Thinking perhaps the Nife battery charger couldn’t initiate charging when the batteries were completely dead, it was tried again for several days, but it still has very low output. Charging resumed with the single-unit charger for one day per battery (another 8 days). Upon completion of that charging session, all cells had a Specific Gravity between the red ‘Recharge’ and white ‘Fair’ zones. Encouraging – but would it enough to start The Beast??

After pre-lubing the engine, the engine was barred-over for several revolutions with cylinder cocks open, to avoid the need to spin the engine electrically. The engine started okay: cranking wasn’t exactly vigorous, but it was good enough. Ran the loco for about 4 hours to make sure the batteries recharged after starting.

Reverser drum stuck again – oil and manual exercise wasn’t enough to make it work by itself.

September 23, 2006
Bought new bolts, and re-tapped the lower bolt hole on P2 contactor in preparation for installing the ‘new’ fingers. However, a large deposit of sputtered copper was found on the finger’s seating surface, caused by the previous finger moving around and arcing. Will attempt later to repair the surface using a motor tool (access is very difficult).

Charged the batteries for several hours (still only 6-7 amps), pre-lubed, and attempted starting the engine. The engine turned over ok with the cylinder cocks open, but upon full compression, turned over only a partial revolution and died. Again, the starting contactors welded shut.

Found a corroded terminal on one of the batteries. Cleaned the terminal, but it did not improve the charging current. While charging, measured each battery terminal voltage: all were 8.1 to 8.2 VDC. Measured voltage drop across each battery terminal/cable junction: all were approx 1 mV.

Checked the current draw on the battery chargers’ 480-volt 3-phase input: all three legs were equal at approximately 1.4 Amps. This eliminated the possibility the charger had been re-wired incorrectly upon reinstallation at Tumbleweed.

September 19, 2006
Discovered that contactors D1 & D2 (dynamic braking) are the same parts as P1 & P2 main power contactors. The fingers on the dynamic brake contactors were well used, but in much better condition than P2. Scavenged all four contact fingers, will use two of them on P2. P1 contactor looks quite good.

September 16, 2006
Discovered that contactors M1 through M8 (motor field shunt) are the same parts as G1 & G2 starting contactors. Since these shunt contactors operate only at high speeds (which was rarely done in this loco’s service life, and never at the museum) the contact fingers are in excellent shape. Scavenged parts from two of the M contactors and replaced the fingers in the starting contactors G1 & G2. Cancelled order with The Locomotive Company.

Discovered severely pitted contact fingers on P2 main power contactor. Cause of the problem was traced to a cross-threaded bolt on the lower finger. Since the bolt did not seat firmly against the finger, the finger was able to move around, which lead to poor contact and severe arcing. This could explain the observed ‘lightening bolt’ and loud ‘crack’ inside the electrical cabinet when the traction power was engaged.

Charged the batteries for several hours: still only a constant 6-7 amps.

September 11, 2006
Contacted The Locomotive Company concerning replacement contact fingers. Westinghouse Type UMA-325C Contactor, style 1256-906B, contact finger part number 757-451.

In stock at $37 each: placed an order for four pieces.

September 9, 2006
Replaced the fuses in the 480 volt circuit with adapters to hold 20 amp fuses. Ran the charger for 5-6 hours: still only 6-7 amps.

Decided that the contact fingers on G1 & G2 starting contactors should be replaced.

September 2, 2006
Connected the AC power cord to the battery charger, and did a thorough compressed-air blow-out of the charger’s cabinet. Crossed fingers and turned on the power (480 volt 3-phase circuit fused at 100 amps!). No smoke.

However, the battery charging current was surprisingly low, hovering around 6-7 amps. Previously, even with the batteries somewhat charged, the normal initial charging current was 20-25 amps, decreasing over a few hours to 10-12 amps. Left the charger on for several hours.

August 26-27, 2006
Assembled an AC power cord for the battery charger. This was done by splicing a HEP plug to a 30-foot length of 12-3 SO cord. Connecting the cord to the power supply remains to be done.

August 05, 2006
After a successful initial cranking of the engine with the cylinder cocks open, all electrical systems appeared to be dead when the engine start was attempted. Battery voltage was low, and a large arc was observed upon opening the knife switch (not normal). Concluding that something was drawing an abnormal amount of current, it was discovered that contactors G1 and G2 were welded shut. Un-stuck the contactors, and filed the contact surfaces (very pitted!). More work with additional filing and contact-cleaner is probably necessary.

Contactors appeared to work properly after that, but by then the battery charge was sufficiently low that the engine would not turn over. Further operation will now need to wait until the 480-volt 3-phase power is available to hook-up the battery charger.

July 29, 2006
Started the engine and ran for about 1-1/2 hours.

July 22, 2006
Performed pre-lube and started the engine. Ran for about 1-1/2 hours to give the batteries a good recharging.

July 15, 2006

Performed pre-lube, and started engine without benefit of first charging the batteries (the new location lacks a power hook-up at this time). Engine started okay, but the initial aux generator current was unusually high (about 80-90 amps instead of 50 amps) due to the deep discharge on the batteries.

Performed switching (along with the Switchmaster) to re-arrange the equipment into a more aesthetic order. What a pleasure it was to be able to use the power and speed of the locomotive on our new, longer track.

Until the electrical supply issue is resolved, the engine will need to be started frequently to maintain the battery charge.

June 29, 2006

After studying the Westinghouse #6-ET Brake Manual, and examining conditions on the locomotive, it was concluded that the position of the Automatic Brake Valve was the culprit. It was in the Holding position, which keeps the locomotive brakes applied (regardless of the position of the Independent Brake Valve). Automatic Brake Valve was moved to Running position, and locomotive brakes worked normally. Reading the Instructions Triumphs Again!

Assembled equipment was moved to Tumbleweed Park, with the Baldwin in the middle of a long string: caboose, steam loco, diesel loco, tool car, steam crane, diesel crane, flatcar and boxcar. Upon arrival at the new location, the Baldwin was used to move the string of equipment into the new yard. Pushing & pulling at the same time made for interesting slack action, and it was heavy enough that the Baldwin needed some sustained throttle above idle to keep it moving.

Upon arrival at the park, the horn received its first real exercise in many years. No mere tentative toot, but a full-out long-short-long. What a glorious noise. We have no neighbors to complain at the museum’s new location!

June 28, 2006

Started the locomotive so it could be hooked onto the end of the assembled equipment for moving to Tumbleweed Park.

Shortly after starting, experienced a problem with the locomotive brakes not releasing: Independent Brake Valve had no effect. Continued movement of locomotive by way of the Conductor walking beside the locomotive and manually opening and closing brake cut-off cock on one truck. Scary but effective.

June 24, 2006

Pre-lubed, started, and ran for about 2 hours. Topped-off the oil in the governor. Along with the Plymouth, used the locomotive to perform double-ended switching for moving cars to track #4 in preparation of moving more cars to Tumbleweed Park.

Despite 8-week hiatus since its last operation, the locomotive started easily and ran well. Reverser stuck once, briefly, but then cleared itself.

June 20, 2006

Checked and refilled battery water (used just under 3 gallons). Received new marker lens.

March 25, 2006

Repaired leaking oil level indicator cup on the front bearing of the rear traction motor blower. Removing three screws on the bearing shell allowed it to rotate enough to remove indicator cup. Also moved the indicator cup to the other side of the bearing for easier access. Refilled with oil: check status next week.

Pre-lubed and started for ½ hour, for the purpose of a visit from Ken Keyer (BNSF Engineer) to give a lesson on the operation of the E6 Train Brake Valve.

February 25, 2006

Performed pre-lube and started engine. Ran for about 45 minutes with no difficulties.

January 29, 2006

Used the Plymouth to move the locomotive out into the yard for display at the Annual Membership Meeting.

January 21, 2006

Used the Plymouth to move the locomotive out into the yard, for degreasing of the ends, engineer’s side, and trucks. Washing the locomotive was in preparation for the Annual Membership Meeting.

Completed replacement of the numberboard ‘glass’ and gaskets. Replacements obtained for the broken marker lenses are the wrong size, so new ones are being sought.

January 14, 2006

Used the Plymouth to move the locomotive out into the yard, for degreasing of the roof and fireman’s side (most of the dirt was oil blown from the exhaust stack).

January 7, 2006

Reset fuel injector pumps to previously documented positions:

From rear-to-front: 5-5-8-4-4-8-9-6

Numbers refer to the pointer position on the engraved markings on the pump plungers.

Lubricated the fuel rack, blower bearings, and roller bearing-equipped axles. Noted that the oil level-indicating cup on the front bearing of the rear blower is loose and leaking. However, the size and shape of the cup precludes turning the fitting to tighten it. Must investigate this further, as this bearing is not holding its oil due to the leak.

Pre-lubed engine, and then used the Plymouth to pull the locomotive into the yard. It started easily, and ran much better than last time (which is not to say great, but more like her old self). Reverser gave some trouble, but oiling and working it by hand freed the mechanism enough to operate on its own.

Ran for about 1 hour, and returned under its own power to parking spot.

November 5, 2005

Performed pre-lube and started and ran for about 1 hour. Performed minor switching to position TC&GB flatcar for final display. Engine did not as well as usual, and smoked excessively.

Poor running is likely due to unauthorized adjustment of the fuel injector pumps. Checking with Walt Eastland at GCRRy for advice on how to reset the pumps. Fortunately, the previous settings were documented, so if all else fails, we can reset as before.

October 15, 2005

Performed pre-lube.  Used the Plymouth to pull the Baldwin into the middle of the yard lead.  Started and ran for about 1 hour.  Ran on own power back to parking spot.  All systems observed ‘ok’.

September 24, 2005

Installed “glass” and new gasket in second of four number boards.

September 17, 2005

Added distilled water to fireman’s side battery set, about 4 gallons.

Installed “glass” and new gasket in first of four number boards.  Looks great!

Initially, it was desired to refurbish the mechanism that changes the color of the marker lights.  This manually-operated device rotates to position different colored glass (clear, amber, green, and red) between the light bulb and the marker lens.  However, these mechanisms are very rusted in place, and one of them no longer has the holders for the colored glass.  Therefore, attempts at fixing them will be abandoned for now.  All four of the markers are ‘stuck’ in the clear position.

September 10, 2005

Added distilled water to engineer’s side battery set.  Despite being only about ½” low, it took almost 5 gallons to fill the batteries.

Performed pre-lube.  Used the Plymouth to pull the Baldwin into the middle of the yard lead.  Started and ran for about 45 minutes.  Ran on own power back to parking spot.  All systems observed ‘ok’.

September 3, 2005

Checked water in batteries - need to replenish.
Checked lubricating oil – ok.

August 27, 2005

Received new number board inserts (plastic), marker lenses, and gasket material.

August 13, 2005

Disassembled the air piping leading to the horn valve, in an attempt to inspect and clean the in-line air filter (suspecting it might be clogged like the filter on the compressor controller). Unfortunately, the filter canister broke upon disassembly.  As a temporary measure, the filter was replaced by a short section of straight pipe until a suitable replacement can be found.  Also broke a bolt securing the valve to its bracket, and brand new pipe wrench fell part.  After all the fuss, the filter appears not to have been clogged.  Not a good day.

July 30, 2005

Performed pre-lube.  Used Plymouth to pull the Baldwin into the middle of the yard lead, away from other equipment (to reduce diesel-dots).  Started and ran for about 45 minutes.  Ran on own power back to parking spot.  All systems observed ‘ok’.

July 23, 2005

Added to fuel tank, 1 quart “Dee-Zol”, Bell Additives Inc.  A preservative for diesel fuel.

July 9, 2005

Disassembled and cleaned oil separator on crankcase ventilator.  Replaced hose on oil drain.

July 2, 2005

Pre-lubed and started ok, and ran for about 45 minutes.  Began disassembly of broken marker lights and number boards.  Ordered new number boards.  Bart to investigate replacement gasket material and replacement lenses.

June 4, 2005

Added 10 gallons lube oil (used old oil resulting from Plymouth oil change). Pre-lubed and started ok, and ran for about 1 hour. Made the usual mess of everything within 100 feet.

May 7, 2005

Cleaned air line filter. Replaced rusted end screens with expanded aluminum mesh, and replaced missing filter media with a copper pot-scrubber pad. Reinstalled filter, and finalized electrical connections.

Pre-lubed and started ok. Air compressor operated automatically and reliably, maintaining pressure between 100 and 125 lbs. Removed temporary manual switch.

April 23, 2005

Pre-lubed and started ok. Calibrated air pressure controller, with electrical contacts disconnected. Manually cycled compressor several times: new controller operated correctly. However, upon connecting electrical switch, system began oscillating at the trip point, same as before!

Suspicion turned to the canister in-line with the air controller system. Removal revealed it to be a filter almost 100% clogged. Evidently enough air got through to activate the pressure switch, but as the unloader valves operated, pressure would drop, causing the switch to close, causing the pressure to increase, causing the switch to open…etc. An oscillating system!

April 13, 2005

Pre-lubed and started ok. Ran for about 2 hours, performed switching in the yard.
Noted small air leak around new plumbing on compressor controller.

April 9, 2005

Installed new brake hose on rear truck.
Mounted and plumbed new air compressor controller with bracket (calibration and electrical hook-up remain).
Removed broken handle on #8 cylinder cock. Filed-down valve shaft to fit standard faucet handle (as had already been done to other cylinders).
Discovered sparrow’s nest in right-rear marker light housing.

April 2, 2005

Installed new brake hose on front truck.
Performed pre-lube and started. Ran for about 45 minutes and did minor switching.

March 26, 2005

Measured for compressor controller mounting bracket.
Removed defective brake hose on front truck.

March 19, 2005

Added 10 gallons lube oil.
Checked batteries – fluid level ok.
Performed pre-lube and started. Ran for about 45 minutes and did minor switching.
No leaking observed from water pump.
Verified operation of battery charging receptacle on fireman’s side (previously not used).

March 12, 2005

Completed filling radiator with plain water.
Cleaned oil on commutator and around generator inspection covers.

February 26, 2005

Continued to add plain water to radiator (this is a very slow process).

February 20, 2005

Drained 165 gallons (3 –55 gallons drums) of antifreeze solution from radiator, and began process of replacing with water. Hopefully this lower concentration will eliminate the water pump leak, while still providing some corrosion protection.

Observed oil on commutator of main generator. This is due to oil dripping from the turbocharger and exhaust stack onto the generator housing, which eventually finds its way inside the generator. This must be cleaned soon.

February 13, 2005

Antifreeze observed leaking from water pump (steady drip). Evidently putting antifreeze in the system was a mistake, despite lower concentration than before.

February 5, 2005

Emptied 110 gallons of plain water from radiator (of 300 gallons total), and replaced with 30% antifreeze solution from barrels previously drained from engine.

January 30, 2005

Demonstrated locomotive for Annual Membership Picnic. Started and ran up and down the track, with cab rides for quite a few members. Did a bit of throttle working to make lots of smoke. Rear headlight decided to work again – will have to keep an eye on that.

January 29, 2005

Used new air-operated pre-lube pump. What a difference! Engine lubed quickly: even had a few pounds reading on main and turbo pressure gauges. Thanks to Rich for the hydraulic hose and fittings, which make for no-drip connections.

January 22, 2005

Prepared for Annual Membership Meeting:

Vacuumed interior of cab, stowed stuff from cab elsewhere.

Degreased west side and handrails.

Checked rear headlight bulbs – filaments ok. Need to diagnose why headlight doesn’t work.

January 15, 2005

Added 10 gallons lube oil. Started and ran for about 3 hours and performed switching. Sanders observed leaking on front truck.

Pneumatic pre-lube pump purchased: working on various plumbing issues before putting to use.

January 8, 2005

Started and ran for about 2 hours. Moved loco about 50 feet down the track to facilitate other switching activities. All systems ok.

December 31, 2004

Re-installed bolt that fell out of #7 fuel injection pump.

Added 10 gallons lube oil and performed pre-lube. Started engine and performed extensive switching for 4-5 hours. Plymouth also in use for switching – another museum first! Accomplished major portion of plan to rearrange rolling stock.

All systems operated well.

December 11, 2004

Added 10 gallons lube oil. Performed pre-lube. Started and ran for 1-1/2 hour. This date marks the first time in the museum’s history that the Plymouth and the Baldwin were running simultaneously.

Had three problems preventing the Baldwin from moving:

Throttle not responding: traced to low oil in governor. Corrected by filling with oil.

Direction control would not engage: traced to frozen reverser. Corrected by oiling and manually exercising reverser.

Upon restart after fixing above problem, the engine was running very roughly. Quickly traced to stuck fuel injector pump on one cylinder (actuator stuck in full throttle position). Punched actuator and problem went away. Later oiled all actuators.

Pushed two cars together 20 feet.

November 6, 2004

Added 5 gallons lube oil. Needs more oil, but current drum is empty. Need to move another drum from bullpen.

Started and ran for 45 minutes.

October 30, 2004

Started and ran for 45 minutes. Performed pre-lube since engine had not been run in several weeks.

October 8, 2004

Started and ran for two hours, performed switching for inbound cars from AAPRCO convention. Manual switch for compressor worked fine despite engineer’s objection to performing additional work.

October 2, 2004

Added 4-gallons lube oil.

Made new washers out of copper, and replaced screws on (3) fuel filter vents. Leaking now stopped from vents. Minor leak remains around one filter bowl.

Mounted temporary switch on control stand to manually operate compressor. Obtained Square-D compressor controller to replace existing unit.

Bolt on lube oil strainer cover fell out (the one that wouldn’t tighten). Plugged hole with rubber stopper. Leaking largely stopped, but this is obviously a very temporary solution!

Started and ran for ½ hour. Performed pre-lube since engine had not been run in several weeks.

September 6, 2004

Tested S-16 controller. Responded well to pressure adjustment, but as pressure approached 140 psi, the rapid cycling started again. A temporary manual switch was used to control compressor during adjustment – this switch could be re-located to cab for manual operation of compressor until controller is fixed.

Started and ran for ½ hour. Performed pre-lube since engine had not been run in several weeks.

August 28, 2004

Re-installed bell. Matt discovered that after cleaning, it was only a matter of setting the correct combination of pressure and flow for bell to operate. Congratulations, Matt!

Re-installed S-16 controller, but not tested yet in locomotive.

August 21, 2004

Removed Wabco S-16 Air Compressor Controller for cleaning and inspection.

Cleaned controller, repainted steel parts. No obvious defects found. Bench tested repeatedly at 100 psi – worked flawlessly.

July 31, 2004

Cleaned, bench-tested, and re-installed magnet valve for compressor controller. Valve was quite dirty, but cleaning did not the solve problem of compressor not running.

Located the source of compressor malfunction: failure of poorly spliced wires (a previous repair). Repaired the splice: compressor now runs, but still with rapid cycling problem. Still need to refurbish wires around compressor controller.

Installed gaskets on fuel filter housings (previously missing), and replaced three fuel filter elements. First filter was completely covered with a thick, dark, gelatinous mass. Still need to replace washers on vent screws.

Added three gallons oil to crankcase.

Installed four missing bolts on body panel, engineer’s side below radiators. Needs more work: some of the holes don’t line up; others have broken-off bolts in holes.

Started and ran for one hour.

July 24, 2004

Re-installed armrest pads on engineer’s side. Nice upholstery job, Jane!

Received new fuel filters (not yet installed).

Started and ran for ½ hour (short time due to misbehaving air compressor).

Removed Westinghouse FA-2 magnet valve used in compressor controller. Believed to be culprit in compressor not operating. Will attempt refurbishing.

July 17, 2004

Replaced rubber fuel line with new unit.

Ran three hours, performed minor switching.

Transferred approx. 450 gallons diesel fuel from reefer tank into locomotive.

Observed that air compressor stopped operating. Was able to operate compressor manually by closing air valve to unloaders.

July 10, 2004

Reinstalled throttle handle, after polishing brass and painting steel portions.

Examined traction-motor blower bearings for means of adjusting axial play – none found.

Bearing: Fafnir Bearing SAL 1-11/16".

Removed leaking rubber fuel line – gave to George to have replacement made.

Removed one of three fuel filter elements - gave to George to find replacements.

Removed armrest pads from engineer’s side – gave to Jane to re-upholster.

Started and ran for one hour.

July 3, 2004

Removed throttle handle for cosmetic restoration.

Added three gallons oil to crankcase.

Started and ran for one hour.

June 26, 2004

Received quote from TLC for complete replacement of bell ringer assembly: $226, 6-8 weeks delivery.

Started and ran for one hour.

June 19, 2004

Obtained O&M Manual for Westinghouse S-16 Compressor Governor.

Replacement parts for bell ringer are not available. Sent critical dimensions of bell and ringer to The Locomotive Co. to assist in finding a currently available unit.

Cleaned oil-cups on traction motor blower bearings. Found Lubrication Instructions placard buried underneath dirt. All bearings now filled with oil (previous oiling was insufficient, due to ignorance of procedure).

Cleaned more accumulated oil from fireman’s side exterior.

Found replacement gasket for lube oil strainer in cab. Installed gasket, which reduced seepage, but strainer still leaks around bolt hole(s). Need to investigate installing heli-coils.

Started and ran for one hour – ran smoothly at all times. Manipulated fuel rack during starting – started almost instantly.

June 12, 2004

Dick Spicer installed a Motorola RR radio in the cab, including antenna and power wiring. Nice neat, professional job. Thanks Dick!

Cleaned and adjusted air compressor governor, in attempt to solve rapid cycling of unloader valves. Unit did respond to adjustment of cut-in pressure, but this did not solve what has now been determined to be an intermittent problem. Sometimes the main reservoir pressure will drop 10-15 psi before compressor loads (as it should), but most times it will cycle on and off rapidly with a duty cycle of 10-30 seconds. Will investigate obtaining O&M manual on Westinghouse S-16 Governor.

Started and ran for one hour. Experienced brief spell of rough running at above-idle speed, including once a 2-foot flame shooting out the stack. Ran fine after that.

Bell: continuing to clean brass, and pursuing replacement parts for clapper.

June 5, 2004

Continued cleaning oil accumulation.

Started and ran for one hour.

Cleaning has revealed a solid brass bell under the dirt. Lookin’ good!  Air-operated clapper has no replaceable seals, and old parts are worn beyond use. Will investigate availability of replacement parts.

May 29, 2004

Added two gallons lube oil.

Started cleaning oil accumulation from exterior, using degreaser and scrub brush. Roof and part of engineer’s side are complete.

Started and ran for one hour.

May 22, 2004

Started and ran for one hour.

May 15, 2004

Removed bell for cosmetic restoration and repair of air-operated clapper.

Discovered leaking air brake hose on front truck.

Measured oil pre-strainer for new cover bolts. Cleaned strainer.

Measured four hoses around water pump (one of which needs replacement soon).

Started and ran for one hour. Started without second person pulling on fuel rack. Cranking took longer, but started ok. No discernable leak from water pump.

May 8, 2004

Cleaned accumulated gunk from fuel rack, exposed grease fittings. Started and ran for one hour.

May 4-5, 2004

Performed switching for receiving inbound cars. Derailed again, front axle only.

May 1, 2004

Added 3 gallons lube oil, added radiator water.

Started and ran for one hour. Water pump leak was only a few drips.

April 24, 2004

Added 2 gallons lube oil, added radiator water.

Started and ran for six hours, performed switching for outbound cars. Water pump leak stopped after about an hour. Derailed front axle on tight curve: rerailing went smoothly.  Whew!

April 17, 2004

Operated the pre-lube pump, since engine had not been run in three weeks. Process did not take as long as last time, due to the shorter time the engine sat idle.

Started and ran for ½ hour.

Drained antifreeze/water mix from coolant system into six 55-gallon drums (a 5-hour process). Refilled coolant system with plain water. This will avoid wasting the antifreeze until the water pump leak is fixed.

April 3, 2004

The Locomotive Company (TLC) has the parts in stock, necessary to rebuild the water pump. Purchase will wait until sufficient funds are available. Parts and Maintenance Manuals have been ordered from TLC: donation courtesy of George Holt and Andy Szabo.

Based on nameplate information we supplied to the Woodward Co., the governor was sold to Baldwin in 1955, confirming our suspicion that it is not the original governor. Printed the corresponding manual from the Woodward website – 75 pages!

March 27, 2004

Explored Load Controller, and Governor. Determined that governor is different than any of several types currently documented. Must contact Woodward for proper info.

Further analysis yields that missing Automatic Shutdown device (though indeed missing) is not responsible for need to work fuel rack while starting. Low-oil pressure shutdown feature is built-in to governor. Is this governor not the original, and the Shutdown Device was removed when a governor with this feature was installed?

Started and ran for only ½ hour.

Running stopped due to discovery of significant coolant leak from water pump. Area underneath pump and spirits equally dampened.

March 20, 2004

Accidentally discovered that "Over Speed Stop" functions properly (details intentionally withheld!).

Identified and labeled several pipes.

Started and ran for 1 hour.

March 14, 2004

Drained coolant system, and transferred 110 gallons of antifreeze into system. Filled remainder of system with water (approximately 300 gallons total system capacity).

March 13, 2004

Added oil to governor.

Installed new metal exhaust cap stack.

Tested new motor/pump combination. Success!

Determined that missing Automatic Shutdown Device is causing the need to "work" the fuel rack during starting. Normally, this device pushes fuel rack away from the "engine stop" position. This function must now be performed manually until governor takes over.

Started and ran for 1 hour.

March 6, 2004

Added approximately 18 gallons of 10W-40 oil to engine crankcase. 40W is the recommended viscosity, but the donated 10W-40 is better than nothing.

Started and ran for about 2 hours – performed switching in yard.

February 28, 2004

Attempted a test of the pool pump – didn’t work. Motor was apparently bad.

Tightened cover on oil filter housing – again.

Started and ran for 1 hour.

February 21, 2004

Antifreeze donated by Prestone arrived this week.

Outfitted old pool-pump for task of transferring antifreeze (line cord, hose fittings, and base plate).

Measured for stack-cap and drip pans.

Started and ran for approx 1 hour.

February 14, 2004

Added more water to batteries (full now).

Replaced missing hardware on traction motor cable hold-downs.

Started and ran for 2 hours, performed switching in yard.

Had initial problem with going forward – problem seemed to be a sticking cam-switch in the controller housing.

A discouraging amount of oil spewed out the stack.  Hand rails and walkways were slippery with oil, and the roof is now entirely black.  Time to find a source for piston rings.

February 7, 2004

Filled grease fittings on:

Roller Bearings (4 axles).

Fuel rack.

Main Generator.

Auxiliary Generator.

Radiator Fan Motors (2).

Taped worn areas, reattached brackets, and added nylon cable ties for armored cables on both trucks.

Added water to batteries (5 gallons, still needs more).

Attempted compression test at cylinder cocks – proved impossible, due to unexpected pressure-release hole on cocks.

Discovered “Manual Shutdown Plunger” on governor.  Plunger was accidentally pulled out, and engine would not stay running.

 Started and ran for one hour.

 Participants: Andy, Young Andy, George B., and Matt.

January 30, 2004

Reattached bracket on water outlet line (bolted instead of welded).

Spliced broken weld on oil inlet line using ¼” plate and bolts.

Completed oiling of traction motor blower bearings.

Added water to batteries (but needs more distilled water).

Opened drain on intercooler – no result.

Cleaned gauge faces on air compressor.

Tightened bolts on base plates for injector pump/valve guides.

Started and ran for about 45 minutes.


Intercooler pressure gauge oscillates between 20-40 PSI.

Compressor oil pressure gauge oscillates between 0 and ? PSI.  Motion of needle is violent.

Crankcase level is below LOW.

Participants: Andy, Young Andy, and George B.

January 24, 2004

Added oil to journals, 30W

 Cleaned oil strainer – very dirty, with bits of red paint from engine interior, and a chunk of old gasket.

Rotated handle on Metal Edge Strainer, opened drain plug with little result.

Opened drain plug on turbo outlet casing with no result. Refurbished and cleaned plug.

Inspected compressor air filters – dirty, blown out with no result.

Started and run for 1 hour.  Started even quicker this time.

Tightened covers on oil strainer and full-flow filter (leaking).

Tightened clamp on coolant hose, outlet pipe (leaking).

Took photos, interior & exterior (cloudy day).

Participants: Andy, Young Andy, & George B.

January 17, 2004

Applied second coat of Gyptal on main generator binding.

Replaced spring-clip on #1 injector linkage.

Added oil to 4 journal boxes, still needs more.

Added oil to governor.

Oil traction motor blower bearings, needs more.

Start and ran for one hour plus.

Documented gauge readings in cab.

Evaluated broken brackets on two pipes (cooling, outlet from engine; & lube oil, inlet to engine).

January 10, 2004

Devised a pre-lube pump, using a hand-operated drum pump inserted through an inspection port.  Added a tee and a valve to oil line to allow easy connection of pump’s hose.  Using the pump is very difficult, so this pump is only a temporary solution.

Pre-lubed engine until oil flowed from upper engine (three guys working in shifts for about two hours!).

Added oil to governor (30W).  Needs more.

Tightened valve covers.

Added water to cooling system (quite a bit). 

Cleaned oil leak spills, to aid in locating their source.

Checked priming of fuel pump – worked immediately!  Flow was verified at return line.

Started engine using only batteries.  Fuel rack must be “wiggled” while cranking.

Tightened covers on oil strainer and full-flow oil filter (leaked while running).

Retaining ring on fuel rack lever to #1 injector pump popped off.  Temporarily repaired with thin copper wire.

Checked for previous oil leaks beneath turbo and mid-engine fireman’s side.  No sign of oil leaking at this time, nor were any water leaks found.  Coolant water was checked again, but refill was not required.

Moved engine 50 feet to test brakes – okay.

December 2003

Replaced five sections of radiator hose (remaining 2-3 sections look okay for now).

Replaced section of copper fuel line.

Rewound binding with jute string on main generator armature.

Applied Glyptal insulating varnish on jute string (first coat only).

Removed non-original and non-functioning electrical wires.

Rebuilt connector and replaced wire on governor

November 9, 2003

  GC crew was due in at 8:30 am, but didn't arrive until around noon.  There was a big highway crash up north on I-17, so they had to take the "back way" to Phoenix.  It took them six hours to get from Flagstaff to the Museum.  Due to the late start, the first important task was lunch at Sideburns (a local restaurant -ed.).

  Even though none of them had ever worked on a Baldwin, it was familiar enough territory for them to jump right in.  The first task on the prime mover was to install the fuel injector pumps that had been rebuilt at the GC shops.  That took several hours, with several more hours getting the fuel pump running.  Initially, problems with the pump were caused by tiny bits of dirt inside the pump gears.  Once the pump was turning, a lack of flow was traced to a faulty Emergency Fuel Shut-Off valve, which has been temporarily bypassed.  Also, one of the copper fuel lines was replaced.  Work continued into darkness, with the aid of the streetlights and a work light.  We stopped for pizza around 7:30 pm and everybody left by 8:30 pm.

  While the diesel mechanics were doing their thing, the electrician inspected the various electrical parts: traction motors, main generator, contactors, etc.  The main generator needs some work (burnishing the armature, reapplying some jute insulation), and there are some traction motor cables that need rehanging, but overall the electrical equipment looks pretty good.

  Work resumed early Sunday morning.  Several gaskets on the oil system were replaced.  The GC crew brought an air-operated pump, which was used to pump oil from the crankcase up through the engine.  We were warned of the necessity of that step whenever the engine has not been run for more than a week: otherwise, instant bearing damage will occur if the engine is turned over without the oil being circulated.  About noon, the electrician was ready to press the Start Button(s).  At first, not much happened, but after a few attempts, the engine began to slowly turn over.  The repeated cranking wore down the batteries, so we hauled out the big welding transformer to provide some extra juice.  Finally, with a little ether squirted into the air intake, the engine roared to life (okay - it was more of a cough than a roar, but it was a really big cough).  What a Triumphant Moment!

The next few hours were spent adjusting the air regulator and injector pumps, and checking brake operation.  The numerous gauges in the cab all had good indications.  Robert Franzen was the first at the throttle, and the Baldwin began to move under her own power for the first time in many years.  Another Triumphant Moment!  Robert used the Baldwin to push the crane and the Plymouth to the north end of track #2, and the Denehotso to the south end of track #2.  With several of the passenger cars gone for the BNSF trip, that provided a nice straight shot down track #2 for some real fun!

The GC crew needed to start on their trip home, so we thanked them profusely and sent them on their way.  I got the opportunity to run the Baldwin back and forth several times.  What a blast!

After a little "play time", I returned the Plymouth, crane and Denehotso to their respectful positions, and sadly shut off the Baldwin.  At that time, we did discover some large oil leaks on the prime mover, but (I think) they are not catastrophic.  We were all pretty worn out by that time to investigate any further.

Based on recommendations by the GC crew, we have quite a long list of things that need attention.  Some of them need to be done before the engine is used again (bad coolant hoses, a small fuel leak, and the above mentioned oil leaks), but the rest can be taken care of as time allows.  Overall, the help provided by the GC crew was enormous.  Despite all of our best intentions and desires, we could have never accomplished what they did in just two short days.

Corporate Donations:

The following organizations have made donations of materials, labor, and/or monies to aid in this restoration project:

Grand Canyon Railway

Prestone Corporation